股票投资建议对于指导投资决策和管理投资量至关重要。最近的研究表明,时间相关模型(TRM)的潜力以产生过多的投资回报。然而,在完整的金融生态系统中,当前的TRM遭受了低信噪比(SNR)(SNR)的固有时间偏见,以及利用不适当的关系倾向和传播机制所引起的关系偏见。此外,分布在宏市场场景后面转移,使基础I.I.D.假设并限制TRM的概括能力。在本文中,我们先驱对上述问题对时间相关模式的有效学习的影响,并提出一种自动偏见的时间关系模型(ADB-TRM)对股票推荐。具体而言,ADB-TRM由三个主要成分组成,即(i)元学习的雅典形成了一个双阶段训练过程,内部部分可以缓解时间依赖性偏置和外部meta-learnernernernernernernernernernernernernernernernerner的分布,(II)自动抗逆向型的型号,(ii)自动化的型号的型模型,以适应性的型号的型模型,以适应性型号的型号,并介绍了对逆向型号的型号。对手培训和(iii)全球局部互动有助于从本地和全球分配的角度寻求相对不变的库存嵌入,以减轻分歧转移。在不同股票市场的三个数据集上进行的实验表明,ADB-TRM在累积和风险调整后的收益方面占28.41%和9.53%的最新技术。
主要关键词