引言机器学习通常缩写为ML,是人工智能(AI)的子集,它的重点是开发计算机算法,这些计算机算法通过经验和使用数据自动改善。用更简单的话来说,机器学习使计算机能够从数据中学习并做出决策或预测,而无需明确编程。在其核心上,机器学习就是关于创建和实施促进这些决策和预测的算法。这些算法旨在随着时间的推移提高其性能,在处理更多数据时变得更加准确和有效。在传统编程中,计算机遵循一组预定义的说明来执行任务。但是,在机器学习中,为计算机提供了一组示例(数据)和一个执行任务,但取决于计算机,以弄清楚如何基于给定的示例来完成该任务。例如,如果我们希望一台计算机识别猫的图像,我们将不会为猫的外观提供特定的说明。取而代之的是,我们给它数千张猫的图像,并让机器学习算法找出定义猫的常见模式和特征。随着时间的流逝,随着算法处理更多图像,即使出现了以前从未见过的图像,它也会变得更好地识别猫。从数据中学习和随着时间的推移改进的能力使机器学习变得难以置信的功能和通用性。这是我们今天看到的许多技术进步背后的推动力,从语音助手和推荐系统到自动驾驶和预测分析。
主要关键词