Python简介 - Google Colab和Jupyter笔记本,数据结构,熊猫(读,写文件,加载数据等),Numpy等。。matplotlib(区域图,散点图,线图,直方图,条形图,框图,热图,刻面,配对图),Seaborn。什么是数据科学,各种类型和数据级别,结构化与非结构化数据,定量数据,定性数据,数据科学生命周期等。数据收集和准备,缺失价值处理,数据擦洗,数据转换,探索性数据分析,人群和样本,矩和生成功能,可变性,假设测试,偏差和方差的度量。有监督的分类,例如KNN和无监督的分类,例如K-均值聚类,模型定义和培训,模型评估。特征工程,尺寸降低 - PCA,回归线性模型:线性回归,逻辑回归。