摘要:基于视频的人重新识别(RE-ID)是一项具有挑战性的任务,旨在根据视频序列匹配各种相机的个人。虽然大多数现有的重新ID技术仅着眼于外观信息,包括步态信息,可能会改善人员重新ID系统。在这项研究中,我们提出了一种新型方法,将外观与步态特征相结合以重新识别个体。外观特征是从RGB轨迹中提取的,而步态特征是从骨骼姿势估计中提取的。然后将这些功能组合成一个单个功能,允许重新识别个人。我们在ILIDS-VID数据集上进行的数值实验证明了骨骼步态特征在增强人重新ID系统的性能方面的功效。此外,通过将最新的矿井网络纳入GAF-NET框架中,我们将排名1和排名5的精度提高了1个百分点。