射频频率(RF)基于步态识别已成为一种有前途的技术,可以以普遍性和不受欢迎的方式对个体进行身份验证。但是,在同一环境中收集同一用户的大量数据时,仍然存在一个基本挑战。为了应对这一挑战,本文介绍了Xgait,Xgait是一个跨模式步态识别框架,不需要事先部署RF设备或显式数据收集。关键想法是利用现代移动设备中广泛使用的惯性测量单元(IMU)的信号,以模拟如果同一个人在RF设备附近行走,则会生成RF信号。尽管有直接的想法,但由于RF设备的多样性,IMU信号和RF信号之间的内在差异以及步态的复杂性,需要解决一些技术挑战。首先,我们提出了一种RF光谱生成方法,以始终在不同的RF信号上提取必需的RF步态数据特征。其次,我们提出了一种具有生成网络的IMU-RF转换方法,该方法将IMU数据准确转换为RF数据。最后,我们设计了RF步态频谱特异性变压器模型,以进一步提高识别性能。我们使用三种RF设备和七个移动设备对XGait进行了全面评估,涉及三十个不同环境中的三十个受试者。实验结果表明,在各种情况下,Xgait始终达到超过99%的前3个精度。
主要关键词