摘要 智能交通系统 (ITS) 基础设施包含传感器、数据处理和通信技术,有助于提高乘客安全、减少旅行时间和燃料消耗,并减少事故检测时间。来自蓝牙® 和基于 IP(蜂窝和 Wi-Fi)通信、全球定位系统 (GPS) 设备、手机、探测车辆、车牌阅读器、基于基础设施的交通流传感器以及未来的联网车辆的多源数据使得多源数据融合能够被利用来对监控或观察的情况产生更好的解释。这是通过减少单个源数据中存在的不确定性来实现的。尽管数据融合 (DF) 已经证明了二十多年,但它仍然是一个与日常交通管理运营相关的新兴领域。迄今为止应用的数据融合技术包括贝叶斯推理、Dempster-Shafer 证据推理、人工神经网络、模糊逻辑和卡尔曼滤波。本文对 ITS DF 应用进行了调查,包括匝道计量、行人过街、自动事件检测、行程时间预测、自适应信号控制以及碰撞分析和预防,并指出了未来研究的方向。迄今为止令人鼓舞的结果不应掩盖在交通管理中广泛部署 DF 之前仍然存在的挑战。