根据气候模型输出,降级或超分辨率为决策者提供了有关气候变化的潜在风险和影响的详细高分辨率信息。机器学习算法证明自己是有效,准确的缩小方法。在这里,我们展示了一种基于生成的,基于扩散的降尺度方法如何给出准确的降尺度结果。我们专注于一个理想化的环境,其中我们在0时恢复ERA5。25◦以2◦分辨率从粗粒子版本分辨率。与标准的U-NET相比,基于扩散的方法具有优异的精度,尤其是在细尺度上,正如光谱分解所强调的那样。另外,生成方法为用户提供了可用于风险评估的概率分布。这项研究强调了基于扩散的降尺度技术在提供可靠和详细的气候预测方面的潜力。
主要关键词