加入订单选择(JOS)是查询操作的基本挑战,因为它会显着影响查询性能。但是,由于近似较大的搜索空间,找到最佳的联接顺序是NP牢固的问题。尽管经过数十年的努力,但传统方法仍然受到限制。深度增强学习(DRL)方法最近越来越兴趣,并且表现出了比传统方法卓越的表现。这些基于DRL的方法可以通过反复试验策略来利用先前的经验,以自动探索最佳的联接顺序。本教程将通过提供各种方法的全面概述,重点介绍最近基于DRL的方法进行加入订单选择。我们将首先简要介绍加入顺序的核心概念和JOS的传统方法。接下来,我们将通过提供有关这些方法的详细信息,分析其关系并总结其弱点和优势,从而提供一些有关DRL的初步知识,然后对基于DRL的联接订单选择方法深入研究。为了帮助观众对JO的DRL方法有更深入的了解,我们将提出两个开源演示,并比较他们的差异。最后,我们将确定研究挑战和开放问题,以提供对未来研究方向的见解。本教程将为JOS开发更实用的DRL方法提供宝贵的指导。
主要关键词