Loading...
机构名称:
¥ 2.0

摘要:心理负荷 (MW) 表示执行并发任务所需的大脑资源量。鉴于 MW 与交通事故风险的相关性,对高级驾驶辅助系统而言,MW 的评估至关重要。在本研究中,在模拟环境中驾驶时对参与者进行了两项认知测试(数字广度测试 - DST 和 Ray 听觉言语学习测试 - RAVLT)。选择这些测试来调查驾驶员对预定认知负荷水平的反应,以对 MW 进行分类。同时使用红外 (IR) 热成像和心率变异性 (HRV) 来获取与受试者心理生理相关的特征,以便为机器学习 (ML) 分类器提供信息。基于单峰 IR/单峰 HRV/多峰 IR + HRV 特征比较了六类模型。基于多模态 IR + HRV 特征的分类器达到了最佳分类器性能(DST:准确度 = 73.1%,灵敏度 = 0.71,特异性 = 0.69;RAVLT:准确度 = 75.0%,平均灵敏度 = 0.75,平均特异性 = 0.87)。基于单模态 IR 特征的分类器也表现出高性能(DST:准确度 = 73.1%,灵敏度 = 0.73,特异性 = 0.73;RAVLT:准确度 = 71.1%,平均灵敏度 = 0.71,平均特异性 = 0.85)。这些结果证明了使用完全非接触式和非侵入式技术来高精度评估驾驶员 MW 水平的可能性,这代表了交通事故预防领域的最新进展。

驾驶员心理负荷等级划分 - MDPI

驾驶员心理负荷等级划分 - MDPIPDF文件第1页

驾驶员心理负荷等级划分 - MDPIPDF文件第2页

驾驶员心理负荷等级划分 - MDPIPDF文件第3页

驾驶员心理负荷等级划分 - MDPIPDF文件第4页

驾驶员心理负荷等级划分 - MDPIPDF文件第5页

相关文件推荐

2007 年
¥32.0
2018 年
¥2.0
2022 年
¥38.0
2022 年
¥38.0