亚马逊云科技 _机器学习领域信息情报检索

AWS的以下部分介绍了机器学习的文章。Amazon Web Services(AWS)是亚马逊公司内部一个充满活力且不断发展壮大的业务部门。订阅我们,获取关于Amazon Web Services机器学习的文章。

从Microsoft Exchange与Microsoft Exchange Connector for Amazon Q Business

Discover insights from Microsoft Exchange with the Microsoft Exchange connector for Amazon Q Business

Amazon Q业务是一家完全管理的,生成的AI驱动助手,可帮助企业解锁其数据和知识的价值。借助Amazon Q Business,您可以通过使用公司各种数据源和企业系统中存储的信息和专业知识来快速找到问题的答案,生成摘要和内容以及完成任务。 […]

观察和评估使用链剂SDK和ARIZE AX

Observing and evaluating AI agentic workflows with Strands Agents SDK and Arize AX

在这篇文章中,我们介绍了如何通过链代理启动和评估AI代理任务,从而有助于验证代理工作流的正确性和可信度。

Amazon Strands Agents SDK:技术深入研究代理体系结构和可观察性

Amazon Strands Agents SDK: A technical deep dive into agent architectures and observability

在这篇文章中,我们首先介绍了Strands Adents SDK及其核心功能。然后,我们探索它如何与AWS环境集成以进行安全,可扩展的部署,以及如何为生产使用提供丰富的可观察性。最后,我们讨论了实际用例,并提出了一个逐步示例,以说明行动中的链。

使用股链代理SDK和Tavily

Build dynamic web research agents with the Strands Agents SDK and Tavily

在这篇文章中,我们介绍了如何将Strands代理与Tavily的专用Web Intelligence API相结合,以创建强大的研究代理,以在复杂的信息收集任务中表现出色,同时保持企业部署所需的安全性和合规性标准。

使用Amazon Bedrock和MCP

Streamline GitHub workflows with generative AI using Amazon Bedrock and MCP

本博客文章探讨了如何使用Amazon Bedrock FMS,Langgraph和模型上下文协议(MCP)创建强大的代理应用程序,并具有处理GitHub工作流程的实际情况,该方案是问题分析的GitHub工作流程,代码修复和提取请求生成。

MISTRAL-SMALL-3.2-24B-INSTRUCT-2506现在可以在Amazon Bedrock Marketplace和Amazon Sagemaker Jumpstart

Mistral-Small-3.2-24B-Instruct-2506 is now available on Amazon Bedrock Marketplace and Amazon SageMaker JumpStart

今天,我们很高兴地宣布,Mistral-Small-3.2-24B-Instruct-2506 - Mistral AI的240亿参数大语言模型(LLM),该模型(LLM)已优化,可通过Amazon Sagemaker Jumpstart和Amazon Bedrock Market Place,可用于增强跟随和减少的重复错误,并减少重复错误。亚马逊基岩市场是亚马逊基岩的一种能力,开发人员可以用来发现,测试和使用[…]

使用Generative AI

Generate suspicious transaction report drafts for financial compliance using generative AI

可疑交易报告(STR)或可疑活动报告(SAR)是一种报告,如果金融组织有合理的理由怀疑任何在活动期间发生或尝试过的金融交易,则必须提交给金融监管机构。在这篇文章中,我们探索了一种使用亚马逊基岩中可用的FMS来创建草稿STR的解决方案。

使用AWS DLC,Amazon EKS和Amazon Bedrock

Fine-tune and deploy Meta Llama 3.2 Vision for generative AI-powered web automation using AWS DLCs, Amazon EKS, and Amazon Bedrock

在这篇文章中,我们提出了一个完整的解决方案,用于微调和部署Web自动化任务的Llama-3.2-11b-Vision-Instruct模型。我们演示了如何在Amazon Elastic Kubernetes Service(Amazon EKS)上使用AWS深度学习容器(DLC)建立安全,可扩展和高效的基础架构。

Nippon India共同基金如何使用Amazon Bedrock上的高级抹布方法提高AI助手响应的准确性

How Nippon India Mutual Fund improved the accuracy of AI assistant responses using advanced RAG methods on Amazon Bedrock

在这篇文章中,我们研究了Nippon Life India Asset Management Limited采用的解决方案,该解决方案通过重写用户查询,汇总和重新响应来提高响应的准确性(NAIVE)抹布方法。所提出的解决方案使用增强的抹布方法,例如重新骑行来提高整体精度

使用Strands Agents和Amazon Bedrock建立药物发现研究助理

Build a drug discovery research assistant using Strands Agents and Amazon Bedrock

在这篇文章中,我们演示了如何使用Strands Agents和Amazon Bedrock创建强大的研究助理来发现药物。该AI助手可以使用模型上下文协议(MCP)同时搜索多个科学数据库,合成其发现,并就药物靶标,疾病机制和治疗领域产生全面的报告。

Amazon Nova Act SDK(预览):浏览器自动化代理的生产途径

Amazon Nova Act SDK (preview): Path to production for browser automation agents

在这篇文章中,我们将介绍使Nova Act SDK与众不同的原因,其工作原理以及整个行业的团队如何使用它来自动化基于浏览器的工作流程。

优化企业AI助手:Crypto.com如何使用LLM推理和反馈来提高效率

Optimizing enterprise AI assistants: How Crypto.com uses LLM reasoning and feedback for enhanced efficiency

在这篇文章中,我们探讨了Crypto.com如何使用用户和系统反馈来不断改进和优化我们的说明提示。这种反馈驱动的方法使我们能够创建更有效的提示,以适应各种子系统,同时在不同用例中保持高性能。

使用Amazon Q Developer CLI和MCP

Build modern serverless solutions following best practices using Amazon Q Developer CLI and MCP

This post explores how the AWS Serverless MCP server accelerates development throughout the serverless lifecycle, from making architectural decisions with tools like get_iac_guidance and get_lambda_guidance, to streamlining development with get_serverless_templates, sam_init, to deployment with SAM

使用Amazon Bedrock Agents

Build an intelligent eDiscovery solution using Amazon Bedrock Agents

在这篇文章中,我们演示了如何使用Amazon Bedrock代理来建立智能的Ediscovery解决方案进行实时文档分析。我们展示了如何通过多代理体系结构一起部署专业代理进行文档分类,合同分析,电子邮件审核和法律文档处理。我们详细介绍实施细节,部署步骤和最佳实践,以创建可扩展的基础,组织可以适应其特定的Edissovery要求。

基准为亚马逊Nova:通过MT Bench和Arena-Hard-Auto

Benchmarking Amazon Nova: A comprehensive analysis through MT-Bench and Arena-Hard-Auto

MT Bench和Arena-Hard的存储库最初是使用OpenAI的GPT API开发的,主要采用GPT-4作为法官。我们的团队通过将其与Amazon Bedrock API集成来扩大其功能,以便使用Anthropic的Claude Sonnet在Amazon上担任法官。在这篇文章中,我们使用MT-Bench和Arena-Hard同时将Amazon Nova模型与通过Amazon Bedrock提供的其他领先的LLM进行比较。

None

Customize Amazon Nova in Amazon SageMaker AI using Direct Preference Optimization

在纽约市的AWS峰会上,我们为亚马逊Nova Foundation Models推出了一套全面的模型定制功能。作为现成的食谱Onamazon Sagemaker AI可用,您可以在模型培训生命周期中使用它们来适应Nova Micro,Nova Lite和Nova Pro,包括预训练,监督微调和对齐方式。在这篇文章中,我们提出了一种简化的方法来自定义Sagemaker培训工作中的Nova Micro。

超越加速器:与日本基因计划的AWS建立基础模型的教训

Beyond accelerators: Lessons from building foundation models on AWS with Japan’s GENIAC program

2024年,经济,贸易和工业部(METI)推出了生成的AI Accelerator Challenge(GenIAC),这是一项日本国家计划,该计划通过为公司提供资金,指导和大量计算资源来提高生成AI的基础资源(FM)开发。 AWS被选为Geniac第二周期的云提供商(周期2)。它为12个参与组织提供了基础架构和技术指导。

使用Amazon Q开发人员和MCP

Streamline deep learning environments with Amazon Q Developer and MCP

在这篇文章中,我们探讨了如何使用Amazon Q开发人员和模型上下文协议(MCP)服务器来简化DLC工作流程以自动化DLC容器的创建,执行和自定义。