介绍MCP:动态AI集成的新标准

AI集成的新时代模型上下文协议(MCP)是人类的开源创新,正在迅速成为AI代理集成中的游戏改变者的吸引力。

来源:Kore.ai
AI集成的新时代模型上下文协议(MCP)是人类的开源创新,正在迅速成为AI代理集成中的游戏改变者的吸引力。 与依靠刚性连接的传统API不同,MCP引入了一个灵活的标准化框架,为AI对话带来了丰富的上下文。  MCP在上下文中所做的回收效果(RAG)是为了集成的。 该图像说明了大型语言模型(LLM)应用程序如何与模型上下文协议(MCP)服务器进行处理以处理用户查询的过程。 The diagram is divided into two main sections: the "Language Model  application (SDK with MCP Client)" on the left and the "MCP Server" on the right, connected by a series of steps outlined in red circles and annotated with numbers 1 through 6.User Query: The process begins with a user submitting a query, represented by an arrow pointing from the user to the Language Model.Intent Recognition / Classification: The LLM, equipped with an SDK containing an MCP client, analyzes the query to recognize the user’s intent or classify it.Orchestrator Chooses MCP Server: Based on the recognized intent, the LLM’s orchestrator selects the appropriate MCP server to handle the request.LLM Translates Intent into Command Schema: The LLM translates the user’s intent into a command schema that aligns with the expectations of the target MCP server.MCP Server Executes and Responds: The selected MCP server is invoked with the command, executes the necessary logic, and returns a response back to the LLM.LLM Generates Natural-Language Response: Finally, the LLM generates a natural-language response based on the MCP server’s output, which is then delivered to the user.The flowchart highlights a collaborative workflow where the LLM acts as an intermediary, interpreting user input and coordinating with the MCP server to fetch or过程数据。与MCP客户端一起使用SDK建议一个有助于