随着先前框架的结构稳定性和过渡金属-NHC的强相互作用,我们的Zn-MOF平台导致具有各种催化剂的MOF产生。在此,我们通过利用自下而上的方法报告了含有固定的铜和金NHC复合物(Cu-NHC MOF和Au-NHC MOF)的MOF的合成。如图1所示,尽管有各种类型的催化物种,但仍保持了MOF的结构。Because the MOFs constructed from copper and gold NHC ligands exhibited high porosity despite the interpenetrated structure and unique tolerance towards various solvents, such as NMP, DMF, THF, and di- oxane, these MOFs readily catalyze various reactions such as Cu-catalyzed azide-alkyne cycloaddition reaction, Cu- catalyzed multicomponent reaction, and Au催化的Hy-droamination。此外,由于NHC对过渡金属配合物的高配位能力高,8轴承NHC金属配合物的MOF在这些MOF催化的有机反应中表现出低浸出催化活性金属位点到反应混合物中,并且可以使用为高效的异质催化剂。
摘要:在这项工作中,我们描述了使用乙醇作为液体有机氢载体(LOHC)的季节性储能的绿色方法的好处和挑战。我们评估了从乙醇(ETOH)释放到形成乙酸乙酯(ETOAC)的循环效率,作为用过的LOHC,以及随后从EtOAC催化的EtOH再生,由单个分子催化剂,Ru-macho,Ru-macho,Ru-macho,ru-macho,ru-macho,ru-macho,h 2,轻度的反应温度和高度选择性温度和高高的反应温度和高高的选择性。从实验和计算研究中,我们能够最大程度地减少催化剂失活,再生活性催化剂后反应,并建立相对于由Ru-Macho催化的周期途径的停用途径的能量。基于这些发现,我们进行了反应堆设计分析,以确定基于ETOH的存储系统的足迹,以通过存储H 2的5公吨(MT)提供85 MWH的能量。我们得出的结论是,维持h 2二压压力所需的供暖和冷却提出了重要的工程挑战,以广泛部署该系统。关键字:RU-MACHO,氢存储,脱氢,反应堆设计,停用■简介
v.yu.dolmatov。技术科学博士,SDTB Tekhnolog研究实验室负责人。电子邮件:dimondcentre@mail.ru当前的研究兴趣:爆炸纳米座的合成和化学净化的理论和应用原理,开发用于生产经过修饰和掺杂的纳米座的新方法,纳米材料的表面化学,纳米材料的表面化学,用于使用Nano-Diaonds of Lighonds技术的技术。A.N.ozerin。 化学科学博士,ISPM RAS的科学主管。 电子邮件:ozerin@ispm.ru当前的研究兴趣:高分子重量化合物;聚合物和聚合物复合材料的物理和力学;大分子化合物的化学;处理聚合物和聚合物复合材料的技术;凝结物理学;化学物理学;聚合物的X射线衍射分析;计算机模拟。 I.I.Kulakova。 PhD化学,MSU化学系石油化学和有机催化的领先研究员。 电子邮件:inna-kulakova@yandex.ru当前的研究兴趣:异质性催化,固体的表面化学,爆炸纳米座量的化学修饰,改良纳米符号在催化和生物医学中的应用。 O.O.BOCHECHKA。 技术科学博士,乌克兰ISM NAS研究副主任。A.N.ozerin。化学科学博士,ISPM RAS的科学主管。电子邮件:ozerin@ispm.ru当前的研究兴趣:高分子重量化合物;聚合物和聚合物复合材料的物理和力学;大分子化合物的化学;处理聚合物和聚合物复合材料的技术;凝结物理学;化学物理学;聚合物的X射线衍射分析;计算机模拟。 I.I.Kulakova。 PhD化学,MSU化学系石油化学和有机催化的领先研究员。 电子邮件:inna-kulakova@yandex.ru当前的研究兴趣:异质性催化,固体的表面化学,爆炸纳米座量的化学修饰,改良纳米符号在催化和生物医学中的应用。 O.O.BOCHECHKA。 技术科学博士,乌克兰ISM NAS研究副主任。电子邮件:ozerin@ispm.ru当前的研究兴趣:高分子重量化合物;聚合物和聚合物复合材料的物理和力学;大分子化合物的化学;处理聚合物和聚合物复合材料的技术;凝结物理学;化学物理学;聚合物的X射线衍射分析;计算机模拟。I.I.Kulakova。 PhD化学,MSU化学系石油化学和有机催化的领先研究员。 电子邮件:inna-kulakova@yandex.ru当前的研究兴趣:异质性催化,固体的表面化学,爆炸纳米座量的化学修饰,改良纳米符号在催化和生物医学中的应用。 O.O.BOCHECHKA。 技术科学博士,乌克兰ISM NAS研究副主任。I.I.Kulakova。PhD化学,MSU化学系石油化学和有机催化的领先研究员。 电子邮件:inna-kulakova@yandex.ru当前的研究兴趣:异质性催化,固体的表面化学,爆炸纳米座量的化学修饰,改良纳米符号在催化和生物医学中的应用。 O.O.BOCHECHKA。 技术科学博士,乌克兰ISM NAS研究副主任。PhD化学,MSU化学系石油化学和有机催化的领先研究员。电子邮件:inna-kulakova@yandex.ru当前的研究兴趣:异质性催化,固体的表面化学,爆炸纳米座量的化学修饰,改良纳米符号在催化和生物医学中的应用。O.O.BOCHECHKA。 技术科学博士,乌克兰ISM NAS研究副主任。O.O.BOCHECHKA。技术科学博士,乌克兰ISM NAS研究副主任。
对扑热息痛的各种配方的定量分析英国药典方法用于分析扑热息痛,涉及将其用1 MOT DM -3 -3 -3硫酸在反流下加热。这是一种直接的,酸催化的,将酰胺水解为胺和羧酸。然后用氧化剂,硫酸铵(LV)硫酸盐使用铁蛋白作为指示剂,将形成的4-氨基苯酚滴定。第一个反应如下:
最初发表于:Diulus,J Trey; Novotny,Zbynek;东芬,南昌;贝科德,扬; Al-Hamdani,Yasmine;尼古隆Comini; Muntwiler,Matthias;亨斯伯格,马蒂亚斯; Iannuzzi,Marcella;奥斯特瓦尔德(Jürg)(2024)。h-bn/金属氧化物界面通过插入生长:纳米固定催化的模型系统。物理化学杂志C,128(12):5156-5167。doi:https://doi.org/10.1021/acs.jpcc.3c07828
摘要:在60-70°C的铜催化铜催化的“通过电子传输再生”型苯乙烯(Arge Atrp)的铜催化的“激活剂”中获得异常的聚苯乙烯凝胶,并使用Ascorbic Acid Acid Acid Acid-Na 2 CO 3作为降低的系统和EtoAc/etoAc/Etoh as solvent组合。由于没有将分支或交联试剂添加到反应混合物中,因此排除了它们的原位形成,因此结果是显着的。在现象的起源上,异常的PS分支需要一个通用的双功能引发剂,并且在机械上与双功能大型引导者之间的终止反应结合。实际上,在导致Cu II构建或增加链聚合速率的反应条件下,分支/交联现象失去强度甚至消失。温度也是一个关键变量,因为对于高于90°C的温度未观察到分支。我们认为,凝胶化的途径始于双功能引发剂的苯乙烯的受控链聚合,很快由于终端单元的根部耦合而导致的阶梯增长聚合。反应混合物中链数和自由基的逐渐减少应使剩余长链的C -Cl末端之间的分子内耦合越来越可能,从而产生了多卡宁网络。
使用Ni和PD催化剂合成的乙烯基成像铸造过程中的聚集结构和形成机制S(p(nb/hnb)S)使用Ni和Pd催化剂合成,由宽和小型X射线散射 - 散射 - 散布 - 技术。讨论了这些数据与玻璃转换温度(T G)的相关性。The single-chain conformation of P(NB/HNB)s was a flexible, stretched structure with respect to the Gaussian chain in a good solvent, as characterized by an exponent of the Mark – Houwink – Sakurada equation, and P(NB/HNB)s formed thin-rod aggregates with a length of 30 nm in semi-concentrated toluene solution via interchain stacking of the rod-like链。p(NB/HNB)从甲苯溶液中铸造的薄膜表现出链订单结构,距离为0.9至1.7 nm,具体取决于NB/HNB的比率。这些发现表明,链排序是由棒状链的堆叠驱动的,这导致了膜中高度有序的链结构。根据链结构,PD催化的聚合物膜比Ni-Cataly催化的聚合物膜高20℃。之间的链排序结构与T g之间存在很强的相关性,这表明p(nb/hnb)s的t g主要受主链之间的范德华相互作用的影响。
范可尼贫血 (FA) DNA 损伤反应 (DDR) 通路调节重要的细胞过程,例如 DNA 复制、细胞周期控制和 DNA 损伤修复。本文我们表明,FANCD2 是 FA DDR 通路的关键成员,它与生殖细胞特异性 Prmt5/piRNA 通路的几个重要成分相互作用,这些通路协调对转座因子 (TE) 的抑制。通过使用标记纯原始生殖细胞 (PGC) 群体的 Pou5f1 -eGFP 报告小鼠,我们证明 FA 缺乏会导致 TE 的抑制解除、PGC 耗竭以及精子发生和卵子发生缺陷。Fancd2-KO PGC 表现出过度的 DNA 损伤并加剧细胞凋亡。从机制上看,我们观察到在 Fancd2-KO ; Pou5f1 -eGFP 和 Fanca-KO ; Pou5f1 -eGFP 胚胎的 E10.5 PGC 中,PRMT5 催化的 H2A/H4R3me2s 标记在 LINE1 TE 上显著减少。此外,我们利用 Fancd2-KI 模型表明,在 WT PGC 中,FANCD2 和 PRMT5 共同占据了 LINE1 的启动子,而在 FA 缺陷型(Fanca-KO)PGC 中,这种共同占据消失了。这些结果表明,FA 通路参与了早期 PGC 中的 TE 抑制,可能通过一种涉及 FANCD2 促进的、PRMT5 催化的抑制性 H2A/H4R3me2s 标记的机制来实现。生殖 (2020) 159 659–668