与设备无关的框架构成了对量子协议的最务实方法,该方法不会对其实现产生任何信任。它需要所有索赔,例如安全性,可以在最终用户手中的最终经典数据级别进行。这对确定与设备无关的量子密钥分布(DIQKD)的可达到的密钥速率构成了巨大挑战,但也为考虑窃听攻击而打开了大门,这些攻击源于源自恶意第三方刚刚产生的给定数据的可能性。在这项工作中,我们探索了这条路径,并介绍了凸组攻击,作为一种高效,易于使用的技术,用于上边界的DIQKD关键速率。它允许验证最先进协议的关键率的下限的准确性,无论是单向或双向通信。特别是,我们在其帮助下证明了目前对DIQKD方案对实验缺陷的限制的预测约束,例如有限的可见性或检测效率,已经非常接近最终的可耐受性阈值。
摘要:我们将非对称量子假设检验中的量子 Stein 引理扩展到复合零假设和备择假设。作为我们的主要结果,我们表明,用于检验量子态凸组合 ρ ⊗ n 与量子态凸组合 σ ⊗ n 的渐近误差指数可以写成正则化的量子相对熵公式。我们证明一般来说需要这样的正则化,但也讨论了我们的公式及其扩展变为单字母的各种设置。这包括从假设检验的角度对相干性相对熵的操作解释。为了证明,我们从经典概率分布的复合 Stein 引理开始,并使用量子熵的基本性质将结果提升到非交换设置。最后,我们的发现还意味着在正则化量子相对熵方面,条件量子互信息的可恢复性下限有所改进——具有明确和通用的恢复图。
⋄回想一下,如果严格的凸组合p =λr1 +(1 -λ)p 2与p 1,p2∈Ωschmidt的分解表明,极端必须是纯状态。⋄仍然要争辩说纯状态是一个极端点。⊲假设p =λr1 +(1 -λ)p 2,p 1,p2∈OH。⊲由于p = | ψ⟩⟨ψ| ,p 2 = p。⊲可以写p = lp 1 p +(1 -λ)pp 2 p。⊲cauchy-schwartz不平等,我们应该有
本文考虑了一种新型的多代理线性随机近似算法,该算法是由多维亚噪声和一般共识型相互作用驱动的,其中每个剂的局部随机近似过程都取决于其邻居的信息。用定向的图形描述了代理之间的互连结构。当通过双随机矩阵(至少在预期中)描述了基于共识的随机近似算法的收敛性,而当互连矩阵简单地是随机的情况下,对这种情况的了解较少。对于任何相关相互作用矩阵的均匀连接的图形序列,该论文在均方误差上得出有限的时间界限,定义为算法偏离相关普通微分方程的唯一平衡点的偏差。对于互连矩阵随机的情况,在没有通信的情况下,平衡点可以是所有局部平衡的任何未指定的凸组合。都考虑了恒定和随时间变化的台阶尺寸的情况。分布式的时间差学习将作为说明性应用。©2023 Elsevier Ltd.保留所有权利。在要求凸组合必须是直接平均值并且任何一对邻近代理之间的互动的情况下,可能是单向的,因此不能以分布的方式实现双重随机矩阵,本文提出了按下的Push-type分布式近似算法,并为时间限制的范围分析范围,以实现其范围,并为时间限制范围,以实现其范围,以实现时间表,以实现时间表的范围,以实现时间范围的范围,以实现时间范围,以实现有限的范围,以实现有限的范围,以实现有限的范围,以实现有限的范围,以实现有限的范围,以实现范围的范围,以实现时间范围。带有随机矩阵的算法,并开发了Push-sum算法的新型特性。
获得了局部酉变换下酉量子比特信道的标准形式。具体而言,证明了酉量子信道的 Choi 矩阵的特征值形成标准形式的一组完整的不变量。由此立即可知,每个酉量子比特信道都是四个酉信道的平均值。更一般地,只要 2(p 1 , . . . , pm ) 由信道 Choi 矩阵的特征值向量优化,酉量子比特信道就可以表示为具有凸系数 p 1 , . . . , pm 的酉信道的凸组合。标准形式的酉量子比特信道会将 Bloch 球面变换到椭圆体上。我们研究了将 Bloch 球面发送到相应椭圆体的自然线性映射的详细结构。
4。弱多项式算法。重新审视了Rolnick andSoberón[26]的想法,我们使用算法来求解Lp s。由此产生的运行时间是弱的多种方案(取决于输入中数字的相对大小),或者取决于LP求解器,或者是超多项式。特别是,上述的随机,强烈多项式算法可以转换为建设性算法,这些算法在其分区中的每个集合上计算tverberg点的凸组合。在计算了t -deppth≥n/ o的近似tverberg点(d 2 log d)之后,我们可以将它们送入Miller和Sheehy的算法的缓冲版本中,以计算深度≥≥(1 - δ)N/ 2(D + 1)2的Tverberg点。这需要d o(log log(d/δ))o w(n 5/2)时间,其中o w隐藏了涉及数字大小的polyrogarithmic项,请参见备注21。
摘要在此贡献中,我们提供了对连续的梯度(CSG)方法的数值分析,包括来自拓扑优化和收敛速率的应用。与标准随机梯度优化方案相反,CSG不会从以前的迭代中丢弃旧梯度样品。相反,计算了依赖设计的集成权重以形成凸组合,以作为与当前设计下真正梯度的近似值。随着近似误差在迭代过程中消失,CSG代表了一种混合方法,就像纯粹随机方法一样开始,并且在极限中像完整的梯度方案一样行事。在这项工作中,CSG的效率是针对拓扑优化的实际相关应用的。这些设置的特征是大量的优化变量和一个目标函数,其评估需要以非线性方式串联的多个积分的数值计算。以前无法通过任何现有的优化方法解决此类问题。最后,关于收敛速率,提供了第一个估计值并在数值实验的帮助下确认。
在量子信息理论中,对于任何维度为 n 的正整数,混合酉量子信道是那些可以用 n × n 复酉矩阵的共轭凸组合表示的线性映射。我们考虑任何此类信道的混合酉秩,它是这种形式表达所需的最少不同酉共轭个数。我们确定了混合酉信道的混合酉秩 N 和 Choi 秩 r 之间的几种新关系,Choi 秩等于该信道的 Kraus 表示所需的最少非零项个数。最值得注意的是,我们证明了对每个混合酉信道都有不等式 N ≤ r 2 − r + 1 满足(当 r = 2 时,等式 N = 2 也是如此),并且我们展示了已知的第一个满足 N > r 的混合酉信道的例子。具体来说,我们证明对于无穷多个正整数 d (包括每个素数幂 d ),存在 Choi 秩为 d + 1 和混合酉秩为 2 d 的混合酉信道。我们还研究了混合酉 Werner-Holevo 信道的混合酉秩。
该硕士学位论文在量子信息理论(QIT)领域,可以被视为量子纠缠的介绍。纠缠是量子力学的关键非经典特征,也是几种现代应用程序的资源,包括量子cryp- forgraphy,量子计算和量子通信。论文探讨了QIT与几何图形,特别是凸集的牢固联系,并通过对欧几里得和希尔伯特空间和运算符的功能分析。基本的定义和概念是在数学框架中引入的,然后与量子信息理论和量子力学中的字段特定符号和概念有关。在开始时以下惯例和概念并进行了审查:bra-ket符号,希尔伯特空间,张量产品,操作员,或(指定基础后)基质代数,以及论文的关键概念,国家的概念(即,痕量的痕迹痕迹)或密度矩阵。一组国家有两个基本二分法。第一个二分法是在复杂的希尔伯特空间中的单位矢量和纯状态统计型的混合状态的纯状状态之间。引入了希尔伯特空间的张量和部分迹线上多方状态的概念。第二次二分法,涉及两分状态,位于可分离状态(即产物态的凸组合)及其补体之间,即纠缠状态。通常会方便地掉落痕量条件并考虑阳性半有限矩阵而不是凸状状态集的锥。CHOI同构通过将作用于矩阵或操作员代数的(超级)操作员与作用于双分部分希尔伯特空间的Choi矩阵有关的(超级)操作员在论文中起着核心作用。在指定基础中choi同构等于