对于神经肌肉疾病,基因增强或基因添加是目前最先进的治疗方式。这种疗法添加了有缺陷基因的功能性拷贝,以促进目标蛋白的产生。除了第一代基因疗法之外,基因编辑技术正在实现一种基于精确修改人类基因组序列的全新治疗方式。这些技术目前才开始进行临床测试 [1]。病毒载体是基因治疗中最常用的药物,因为它们能够将许多治疗基因拷贝递送到靶细胞。最常用的类型包括腺病毒载体、逆转录病毒载体、慢病毒载体和腺相关载体。慢病毒载体能够将其遗传信息整合到靶细胞的基因组中,而腺相关载体则不会整合到靶细胞的基因组中。相反,遗传信息作为附加体保留在细胞核中。因此,这些载体可以在不改变宿主细胞基因组的情况下表达治疗基因,但它们的使用主要限于非分裂细胞。基因转移可以在体外或体内进行(图 1)。体外基因治疗最先进的用途是利用慢病毒载体改造造血干细胞,以治疗地中海贫血等遗传性疾病。体内方法主要基于腺相关载体 (AAV),目前用于治疗神经肌肉疾病、视网膜病或血友病 [2]。基于 AAV 的基因疗法的主要局限性包括对基因传递载体和外来转基因产物的免疫反应。这些反应通常需要预防性或反应性免疫调节治疗。目前,一些患者由于预先存在针对载体衣壳的抗体而被排除在基于 AAV 的基因疗法之外。本文将回顾神经肌肉疾病创新和突变特异性治疗的当前发展状况,并讨论对受影响患者及其家属的诊断和咨询的影响。
引言致病性T细胞引起许多疾病,包括大多数自身免疫性疾病和移植物与宿主疾病(GVHD)(1)。在保留正常T细胞和其他组织的同时选择性地靶向这些致病性T细胞是现代医学中治疗性开发的圣杯。到目前为止,泛免疫抑制药物(例如皮质类固醇)用于控制T细胞相关的炎症条件,临床功效不令人满意和许多严重的不良反应(2)。可以很好地确定,一旦被自动或同种抗原激活的致病性T细胞开始迅速生命,从而导致组织损伤,而其他正常T细胞保持静止。单独离开静态T细胞的同时选择性地靶向生命的T细胞,将是开发新药的有效策略,用于致病性T细胞介导的疾病。有丝分裂毒素选择性地杀死主动分裂细胞,并已成功地用于治疗癌症,因为肿瘤细胞通常会积极生长(3)。由于正常的组织细胞(如毛囊和肠上皮细胞)在生理条件下也会增殖,因此这些正常细胞也受到影响,在这些化学疗法中常见的不良反应中表现出来(4,5)。为了有选择地消除致病性增殖T细胞,需要将化学治疗性有丝分裂毒素直接递送到T细胞中。抗体 - 药物结合物(ADC)正在成为有前途的癌症治疗。这些癌细胞和致病性T细胞具有一个共同的特征 - 两者都在积极增殖。通过将有效的毒素结合到针对癌细胞表面抗原特异性的单克隆抗体(MAB)上而开发,该毒素在与表面抗原结合后,通过MAB选择性地输送到靶癌细胞中,并被内化地化为癌细胞而没有对其他组织的癌细胞杀死癌细胞(6)。单甲基极氨基蛋白E(MMAE)是一种有效的有丝分裂毒素,是几个FDA批准的ADC中的有效载荷,它通过迅速诱导细胞凋亡而杀死了主动分裂的癌细胞(7)。因此,已证明的ADC方法
Martin 博士是 GENYO 基因和细胞治疗小组的首席研究员。在过去的 25 年里,该公司的活动一直集中在开发新的、更有效、更安全的基因转移系统,用于治疗癌症和罕见疾病的先进疗法。他于1995年至1997年在英国癌症研究所(ICR)工作,随后于1997年至2002年在英国伦敦温德耶医学科学院(UCL)工作,专注于逆转录病毒载体的开发,用于制定癌症免疫治疗策略。 2002 年,他作为 Ramón y Cajal 员工在 IPB López Neyra (CSIC) 建立了自己的细胞和基因治疗 (CGT) 研究小组,并从 2009 年起在 GENYO 工作。他自 2019 年起担任西班牙基因和细胞治疗协会董事会秘书,自 2012 年起担任格拉纳达大学生物医学博士课程和免疫学硕士学术委员会成员。马丁博士在国际期刊上发表了 84 多篇科学文章,包括《自然生物技术》、《分子生物学杂志》、《生化科学趋势》、《EMBO 杂志》、《干细胞》、《分子治疗》、《病毒学杂志》、《免疫学杂志》、《关节炎与风湿病》、《病毒学杂志》、《白血病》、《干细胞转化医学》、《控释杂志》等。他的文章被引用超过2020次,H指数=27。他已经获得了13项与基因细胞治疗和免疫治疗相关的专利。基于其中几项专利,他在 2016 年创立了 LentiStem Biotech,这是一家衍生公司,其目标是优化用于治疗罕见疾病和癌症的基因治疗工具。近年来,他的团队一直致力于改进生产用于治疗 Wiskott-Aldrich 综合征、庞贝病和癌症的先进治疗药物 (ATMP) 所需的工具。为此,它专注于两种基因改造系统:1)慢病毒载体是目前在活跃分裂细胞中实现稳定基因改造的最有效和最安全的工具;2)基因组编辑工具(ZFN、CRISPR/Cas、TALEN)是未来高效、无风险基因治疗的技术。
引言嵌合抗原受体T细胞(CAR-T)疗法为治疗诸如血红蛋白病,免疫缺陷和各种形式的癌症等疾病提供了巨大的潜力。在这些疗法中,病毒载体是创建最终CAR-T产品的关键组成部分。病毒载体促进了感兴趣的基因的传递,这有助于T细胞识别癌细胞。慢病毒通常被选择为病毒载体,因为它在转导分裂和非分裂细胞及其既定的安全概况方面的有效性(Sinn等,2005)。使用LV进行了200多次正在进行的临床试验,用于体内细胞修饰或体内疗法,以及最近对几种EX Vivo LV疗法的FDA批准,正在发生病毒载体需求的主要激增(ClinicalTrialStrials.gov)。低慢病毒滴度生产从当前的细胞培养物中获得的生产需要大量生产量来满足需求,这意味着大规模的培养基制剂和产品存储以及长期而复杂的生物反应器种子火车和病毒制造过程。LV的不稳定性质也带来了挑战,在室温下半衰期为8-40小时,在37°C下为8 - 12小时,这可以进一步降低有效的滴度(Dautzenberg等,2021,Labisch等,2021,2021,以及Higashikawa和Chang and Chang,2001年)。解决这些大规模制造缺点的一种方法是加强LV生产过程。此外,TFDF灌注可以在72小时的时间内将LV连续收获到4°C的储存容器,以维持LV功能滴度(Labisch等,2021)。最近的出版物表明,使用切向流动深度过滤(TFDF)灌注技术用于LV制造可以提高工艺生产率并降低成本(Tran等,2022; Tona等,2023)。TFDF疗法的这种连续的轻柔收获特征LV灭活问题,该问题会对批处理模式下的LV产生产生负面影响。TFDF技术提供2 - 5 µm的孔径深度滤波器,以切向流量模式运行,以保留生物反应器中的细胞和细胞碎屑,同时可以连续收获废物代谢物和分泌的载体。
血液遗传疾病是由基因或其调控元件的突变引起的,这些突变会导致蛋白质功能失调、失调或缺失。传统的基因治疗方法是使用病毒载体将突变基因的功能性拷贝添加到患者细胞中,例如腺相关病毒 (AAV)(Mingozzi 和 High,2011)和慢病毒 (LV) 衍生载体(Naldini,2011)。这些经过修饰的病毒可以将其基因组中编码的转基因表达盒递送到细胞核中,在那里使用遗传信息。这种基因替换策略与突变无关,因此可以使患有相同疾病的患者受益,无论其基因型如何。尽管在体外和体内治疗多种单基因疾病方面取得了显著成功( Dunbar 等人,2018 年),但在改善治疗结果和治疗具有挑战性的单基因疾病(如血红蛋白病、免疫缺陷和先天性贫血)以及多因素血液疾病(如癌症、自身免疫和感染性疾病)方面仍然存在重大障碍。除了载体特异性问题,如免疫原性和向性( Masat 等人,2013 年; Colella 等人,2018 年)(超出了本综述的范围)之外,经典基因置换有一个主要局限性:很难在病毒载体环境中忠实地重现内源启动子的特性和基因特异性调控。组织、发育和刺激特异性基因表达需要不同基因组元件(启动子、增强子和沉默子)的复杂相互作用,这些元件可能位于基因组的较远区域,跨越几千个碱基(Schoenfelder and Fraser,2019 年)。AAV 载体是小病毒(约 4.7 kb),限制了表达盒中调控元件的选择,尤其是在递送大型转基因时(Li and Samulski,2020 年)。此外,它们主要以游离体的形式存在于非分裂细胞中,并在细胞分裂过程中逐渐丢失(Nakai 等人,2001 年;Ehrhardt 等人,2003 年;Bortolussi 等人,2014 年),这是一个主要障碍
通过特异性校正治疗遗传病的概念几十年来一直是生物医学领域的焦点。理想的解决方案是提供一种精确的方法来永久修复此类突变而不会引入新的错误。早期的基因编辑尝试涉及使用锌指核酸酶、TALEN 和 CRISPR-Cas9 核酸酶在特定位点引入双链断裂,以刺激与外源供体 DNA 模板的同源重组以纠正缺陷。然而,这些技术也会以高频率引入插入/缺失。在这里,我们评估了瞬时 mRNA 治疗引入永久性单碱基编辑的潜力。碱基编辑器通过创新的改良 Cas9 系统提供了在体内纠正单点突变的潜力。胞嘧啶碱基编辑器 (CBE) 使用与胞嘧啶脱氨酶和尿嘧啶 DNA 糖基化酶抑制剂融合的 Cas9 切口酶。当引导链将胞嘧啶-鸟嘌呤碱基对导向基因组中的特定位置时,小窗口中的胞嘧啶-鸟嘌呤碱基对会高效地转化为胸腺嘧啶-腺嘌呤对,且插入/缺失最少。同样,腺嘌呤碱基编辑器 (ABE) 使用实验室进化的与 Cas9 切口酶融合的脱氧腺苷脱氨酶将腺嘌呤-胸腺嘧啶碱基对转化为胞嘧啶-鸟嘌呤对。与基于核酸酶的方法相比,使用碱基编辑器可增加靶向编辑频率,同时大大减少脱靶插入/缺失的形成。与病毒载体和质粒相比,mRNA 具有以下主要优势:1) 降低载体整合风险;2) 能够编辑难以转染的非分裂细胞,因为 mRNA 靶标是细胞质而不是细胞核;3) 可在体内重复给药,这对于病毒载体来说具有挑战性,因为衣壳存在免疫反应;4) 瞬时表达,这对于最大限度提高基因组编辑应用的特异性非常理想。在这项研究中,我们比较了 HEK293 细胞中经过序列优化、化学修饰的 CBE 和 ABE mRNA。Western blot 分析显示,与未修饰的 mRNA 相比,经过 5-甲氧基尿苷修饰、经过序列优化的 mRNA 表达更高。在培养细胞中,mRNA 的编辑频率高于质粒载体。我们展示了使用一个碱基编辑器 mRNA 同时编辑多个位点以及编辑以前无法访问的基因组位点的能力。这些结果证明了碱基编辑技术的深远潜力。最后,我们开发了一种小鼠模型,使用注射到小鼠受精卵中的 BE4max 变体 mRNA,该模型将用于在未来的研究中测试体内 ABE 校正。
德国德累斯顿和马萨诸塞州列克星敦,2024 年 4 月 23 日——Seamless Therapeutics 今天宣布任命 Albert Seymour 博士为新任总裁兼首席执行官,任命 Adam Rosenberg 为公司董事会独立主席。两人都拥有成功领导开拓性生物技术公司的长期记录,重点是基因编辑和新技术。此外,他们的综合经验将有助于 Seamless Therapeutics 在美国开展研发 (R&D) 活动。随着领导层的增加,Seamless Tx Inc. 将在马萨诸塞州列克星敦成立,专注于将差异化重组酶技术从早期发现转化为临床。Seymour 博士将驻扎在该办公室,取代代理首席执行官兼联合创始人 Anne-K. Heninger 博士,后者将继续留在公司并继续担任运营主管,负责监督德累斯顿工厂的运营。 Seamless 正在将编程重组酶(一种在科学研究中广泛使用数十年的酶)方面的重大突破转化为治疗性基因编辑的准确性和灵活性。该公司独特的技术平台允许位点特异性可编程重组酶,这些重组酶经过设计,具有特异性和活性,可精确切除、交换、反转或插入任何目标基因序列中的 DNA 片段。早期体内临床前证据表明,Seamless 的可编程重组酶可以通过反转精确编辑 138 千碱基片段。通过此过程进行编辑与细胞的 DNA 修复途径无关。该平台提供了使用单一疗法解决多种致病突变以及将基因编辑扩展到非分裂细胞类型的机会。该公司迄今已筹集了 2500 万美元的种子资金,由 Forbion 和 Wellington Partners 牵头,以推进其专有技术。该团队目前专注于生成一系列创新候选产品,旨在治疗人类疾病,而不管具体的基因改变如何。 Seamless Therapeutics 首席执行官 Albert Seymour 博士表示:“Seamless Therapeutics 凭借其独特的平台和全面的工具箱(能够对重组酶进行编程),走在基因编辑下一波创新的前沿。平台技术加上我们在莱克星顿的研发团队的壮大,提供了工具和专业知识,可以精确纠正基因组特定位点的一系列 DNA 突变。我们的目标是继续创新,为一系列疾病带来新的治疗方法,从而解决重大的未满足医疗需求。”“Seamless Therapeutics 的潜力
摘要:在成年啮齿动物中,空间学习可增加海马齿状回的神经发生。此前,啮齿动物大脑中另一个主要的神经发生区,即脑室下区 (SVZ),尚未发现类似的效应。尽管大多数 SVZ 产生的神经元会前往嗅球,但一小部分神经元会横向迁移到纹状体。考虑到纹状体在运动学习中的作用,我们想知道运动学习是否会增加成年 SVZ 神经发生。为了验证这一假设,成年雄性 C57Bl/6 小鼠接受了转棒训练,并注射了 5-乙炔基-2'-脱氧尿苷 (EdU) 来标记分裂细胞。使用了两个对照组:模拟训练小鼠静止坐在静止的转棒上,而幼稚小鼠则留在笼子里。在任务完成后 1、7 和 30 天收集大脑,并用 EdU、双皮质素 (DCX) 和 NeuN 进行免疫组织化学处理,以定量分析不同时间点的神经元增殖和存活情况。FACS 对 EdU 标记的细胞核进行分选作为次要测量。我们发现运动学习会增加 SVZ 神经发生,任务完成后一天,与模拟训练小鼠相比,转棒小鼠的 EdU+ 细胞增加了 1.4 倍,总 EdU 强度增加了 1.8 倍。重要的是,一组使用跑步机代替转棒的对照实验表明,在排除运动作为混杂因素的情况下,跑步小鼠和静止小鼠的 SVZ EdU 标记没有差异。转棒小鼠和模拟训练小鼠的 SVZ 中的 DCX 表达最初升高了 1.7 倍,但 7 天后在模拟训练小鼠中恢复到基线水平,而在转棒训练小鼠中仍保持较高水平。这些结果表明,学习诱导的神经发生会在运动训练后的一周内持续进行。转棒训练任务的影响在纹状体中也持续存在一段时间。在训练后 7 天和 30 天,转棒训练小鼠的纹状体 EdU+ 细胞更加丰富。此外,在训练后 7 天,纹状体中存在迁移的 EdU+ / DCX+ 神经元,尽管很少见,但在训练后 30 天仍可识别出存活的纹状体 EdU+ / NeuN+ 神经元。总体而言,这些结果证明了运动学习在成年啮齿动物 SVZ 中的神经发生影响,并表明运动学习可能会驱动未成熟神经元迁移到纹状体。
注1。细胞因子:一种主要由其他细胞分泌的蛋白质,并通过与细胞表面的受体结合来维持和生长细胞。如果缺乏,细胞将无法生存。注2。造血干细胞:这些是哺乳动物成人骨髓中发现的少数细胞,通过分裂细胞,它们为生命提供了血液。注3。线粒体:细胞内的细胞器之一。使用两种代谢途径,即柠檬酸循环和电子传输系统,将使用氧气吸入细胞的养分被分解为水和二氧化碳以产生ATP。注4。sdhaf1:一种在电子传输系统中称为复合物II的蛋白质,以及辅助琥珀酸脱氢酶(SDH)复合物的因子的缩写。注5。ATP:三磷酸腺苷。细胞所需的最大能量是由ATP分解时产生的能量提供的。注6。 pGAM1基因诱导的缺失小鼠:一种在磷酸甘油酸突变酶基因(糖酵解酶之一)给予他莫昔芬(一种化学合成的雌激素)时被诱导删除的小鼠。可以在时间和组织中专门删除基因。注7。 糖酵解系统:将葡萄糖掺入细胞中并分解为丙酮酸和乳酸无氧的过程,从而获得能量。注8。 离子色谱/质谱技术:通过组合电离色谱法量化每个分子的丰度的技术,可以高精度分离电离化合物和质谱法,质谱法,从而可以精确测量质量和电荷的比例,从而量化每种分类分子的质量和电荷。注9。 五肽磷酸盐循环:一种代谢途径,该途径合成了来自葡萄糖的Pentose,一种DNA和RNA的材料。在此过程中,细胞提供去除活性氧所需的还原能力。注意10。 活性氧:在包含氧的分子中,它们是特别反应性的,很薄,例如DNAATP:三磷酸腺苷。细胞所需的最大能量是由ATP分解时产生的能量提供的。注6。pGAM1基因诱导的缺失小鼠:一种在磷酸甘油酸突变酶基因(糖酵解酶之一)给予他莫昔芬(一种化学合成的雌激素)时被诱导删除的小鼠。可以在时间和组织中专门删除基因。注7。糖酵解系统:将葡萄糖掺入细胞中并分解为丙酮酸和乳酸无氧的过程,从而获得能量。注8。离子色谱/质谱技术:通过组合电离色谱法量化每个分子的丰度的技术,可以高精度分离电离化合物和质谱法,质谱法,从而可以精确测量质量和电荷的比例,从而量化每种分类分子的质量和电荷。注9。五肽磷酸盐循环:一种代谢途径,该途径合成了来自葡萄糖的Pentose,一种DNA和RNA的材料。在此过程中,细胞提供去除活性氧所需的还原能力。注意10。活性氧:在包含氧的分子中,它们是特别反应性的,很薄,例如DNA
高内涵显微镜在生物学和医学领域取得了许多进展。这种快速发展的技术正在将细胞生物学转变为大数据驱动的科学。计算机视觉方法用于自动分析显微镜图像数据。近年来,深度学习变得流行起来,并在计算机视觉领域取得了重大成功。大多数可用的方法都是为处理自然图像而开发的。与自然图像相比,显微镜图像带来了特定领域的挑战,例如训练数据集小、对象聚类和类别不平衡。本文介绍了用于显微镜图像中对象检测和细胞分割的新型深度学习方法。对于荧光显微镜图像中的粒子检测,提出了一种基于领域自适应反卷积网络的深度学习方法。此外,提出了一种在异质组织病理学图像中有丝分裂细胞检测的方法,该方法结合了深度残差网络和霍夫投票。该方法用于乳腺癌全切片组织学图像的分级。此外,介绍了一种基于物体质心的粒子检测和细胞检测方法,该方法可以端到端训练。它包括一个新的质心提议网络、一个用于在图像尺度和锚点上集成检测假设的层、一个有利于先前锚点而不是回归位置的锚点正则化方案以及一种改进的非最大抑制算法。此外,提出了一种基于归一化互信息的新型损失函数,该函数可以应对强烈的类别不平衡,并且是在贝叶斯框架内推导出来的。对于细胞分割,引入了一种具有增加的接受场以捕获丰富语义信息的深度神经网络。此外,提出了一种结合卷积神经网络的多尺度特征聚合和循环神经网络的迭代细化的两种范式的深度神经网络。为了提高训练的鲁棒性并改善分割,提出了一种新的焦点损失函数。此外,还提出了一种用于生物医学图像分析流程的黑盒超参数优化框架。该框架具有模块化架构,将超参数采样和超参数优化分开。建议基于最小投影对损失函数进行可视化,以进一步了解优化问题。此外,还提出了一种迁移学习方法,该方法仅使用一个颜色通道进行预训练,并对更多颜色通道进行微调。此外,还提出了一种用于组织病理学幻灯片的无监督域自适应方法。最后,介绍了 Galaxy Image Analysis,这是一个基于 Web 的显微镜图像分析平台。已经开发了用于细胞培养中的细胞分割、小鼠脑组织中的粒子检测和 MALDI/H&E 图像配准的 Galaxy Image Analysis 工作流程。所提出的方法已应用于具有挑战性的合成和真实