Loading...
机构名称:
¥ 19.0

高内涵显微镜在生物学和医学领域取得了许多进展。这种快速发展的技术正在将细胞生物学转变为大数据驱动的科学。计算机视觉方法用于自动分析显微镜图像数据。近年来,深度学习变得流行起来,并在计算机视觉领域取得了重大成功。大多数可用的方法都是为处理自然图像而开发的。与自然图像相比,显微镜图像带来了特定领域的挑战,例如训练数据集小、对象聚类和类别不平衡。本文介绍了用于显微镜图像中对象检测和细胞分割的新型深度学习方法。对于荧光显微镜图像中的粒子检测,提出了一种基于领域自适应反卷积网络的深度学习方法。此外,提出了一种在异质组织病理学图像中有丝分裂细胞检测的方法,该方法结合了深度残差网络和霍夫投票。该方法用于乳腺癌全切片组织学图像的分级。此外,介绍了一种基于物体质心的粒子检测和细胞检测方法,该方法可以端到端训练。它包括一个新的质心提议网络、一个用于在图像尺度和锚点上集成检测假设的层、一个有利于先前锚点而不是回归位置的锚点正则化方案以及一种改进的非最大抑制算法。此外,提出了一种基于归一化互信息的新型损失函数,该函数可以应对强烈的类别不平衡,并且是在贝叶斯框架内推导出来的。对于细胞分割,引入了一种具有增加的接受场以捕获丰富语义信息的深度神经网络。此外,提出了一种结合卷积神经网络的多尺度特征聚合和循环神经网络的迭代细化的两种范式的深度神经网络。为了提高训练的鲁棒性并改善分割,提出了一种新的焦点损失函数。此外,还提出了一种用于生物医学图像分析流程的黑盒超参数优化框架。该框架具有模块化架构,将超参数采样和超参数优化分开。建议基于最小投影对损失函数进行可视化,以进一步了解优化问题。此外,还提出了一种迁移学习方法,该方法仅使用一个颜色通道进行预训练,并对更多颜色通道进行微调。此外,还提出了一种用于组织病理学幻灯片的无监督域自适应方法。最后,介绍了 Galaxy Image Analysis,这是一个基于 Web 的显微镜图像分析平台。已经开发了用于细胞培养中的细胞分割、小鼠脑组织中的粒子检测和 MALDI/H&E 图像配准的 Galaxy Image Analysis 工作流程。所提出的方法已应用于具有挑战性的合成和真实

Thomas Wollmann 博士论文

Thomas Wollmann 博士论文PDF文件第1页

Thomas Wollmann 博士论文PDF文件第2页

Thomas Wollmann 博士论文PDF文件第3页

Thomas Wollmann 博士论文PDF文件第4页

Thomas Wollmann 博士论文PDF文件第5页