视频时刻的检索和突出显示检测是视频理解中的两个高度宝贵的任务,但是直到重新进行了共同研究。尽管现有研究最近取得了令人印象深刻的进步,但它们主要遵循数据驱动的自下而上的范式。这种范式忽略了特定于任务的和任务间的效果,导致模型性能差。在此过程中,我们提出了一个新型任务驱动的自上而下的框架 - 联合力矩检索并突出检测。该框架引入了一个任务耦合的单元,以捕获特定于任务和共同表示形式。为了研究这两个任务之间的相互作用,我们提出了一种任务式反馈机制,该机制将一个任务的结果构成指导蒙版的结果,以指导另一个任务。与现有方法不同,我们提出了一个与任务有关的关节损失函数,以优化模型。对QVhighlights,TVSUM和Charades-Sta数据集进行了全面的实验和深入研究,证实了所提出的框架的有效性和灵活性。代码可在github.com/edengabriel/taskweave上找到。
精神治疗反应的生物标志物仍然难以捉摸。功能磁共振成像(fMRI)已显示出希望,但低可靠性限制了典型的fMRI措施作为治疗成功的前提。引人注目的是,大脑信号的时间变异性已经证明是个体差异的敏感且可靠的指标,但尚未与精神病治疗结果有关。在这里,使用简单的基于任务和静止状态的fMRI扫描了45例社交焦虑症患者两次(相隔11周),以捕获力矩到时刻的神经变异性。fMRI测试重测后,患者接受了9周的认知行为疗法。可靠性基于5倍的交叉验证表明,基于任务的大脑信号变异性是治疗结果预测模型(总R实际,预测= .77)的最强贡献者 - 表现优于自我报告,静止状态神经变异性和基于标准的基于基于神经活动的平均值。值得注意的是,基于任务的大脑信号变异性显示出极好的测试可靠性(类内相关系数= .80),即使任务长度少于3分钟。而不是不良“噪声”的来源,而是瞬间的fMRI变异性可以作为临床结果的高度可靠,有效的预后指标。
这项研究提出了一种人工智能方法,以考虑多因素之间的相互作用,例如地质条件,施工参数,结构序列以及灌浆体积和时间安排,以预测盾牌隧道过程中的地面沉降。人工智能方法采用了混合神经网络模型,该模型将差异进化算法纳入人工神经网络(ANN)。差分进化算法用于确定ANN的优化结构和超占主米。然后采用自适应力矩估计(ADAM)方法来促进ANN的训练过程。在亚当的强度上,进化算法将进一步增强,以处理大量ANN候选者而不消耗大量计算资源。所提出的混合模型应用于广州地铁线路的盾牌隧道期间的地面定居点的现场案例9。地质条件和屏蔽操作参数首先是通过特征表演策略来表征和量化的,然后是模型的输入。结果使用所提出的混合模型验证预测的准确性。此外,通过部分导数敏感性分析方法,可以确定对地面沉降影响很大的屏蔽操作参数,该方法可以为屏蔽操作提供指导。
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或用于机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平变得至关重要。引入了与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或用于机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平变得至关重要。引入了与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
摘要。无线通信是实现工业 4.0 智能制造概念目标的关键支持技术。美国国家标准与技术研究所的研究人员正在构建一个测试平台,以帮助在工厂工作单元和其他恶劣的工业无线电环境中采用无线技术。在本文中,作者介绍了一种新的工业无线测试平台设计,该设计可以激发学术研究并与行业需求相关。该测试平台旨在作为无线工作单元的演示和研究平台。这项工作利用了过去测试平台的经验教训,其中包括双机器人机器操作场景和力矩寻找机械臂装置。此版本的测试平台包括计算和通信元素,因此在实验室内施加的无线电干扰、竞争网络流量和无线电传播效应的影响下,物理系统的运行明显降低。该测试平台包括两个协作级机器人手臂、可编程逻辑控制器和用于情境跟踪、警报和控制的高性能计算设备。本文旨在为工业无线测试平台设计的探索做出贡献,同时征求同行研究人员的反馈意见。
垂直起降(VTOL)是无人机(UAV)的基本功能。VTOL一方面可以拓展和增强无人机的应用领域,但另一方面也使得无人机控制系统的设计更加复杂。控制系统设计中最具挑战性的需求是实现固定翼无人机对控制指令满意的响应敏锐度以及确保飞机模态通道有效解耦。本文在气动分析的基础上,建立了含有力和力矩的六自由度(6-DoF)模型,并通过计算流体力学(CFD)数值模拟进行气动分析。提出一种基于扩张状态观测器(ESO)的改进比例微分(PD)控制器来设计内环姿态控制,增强了无人机系统对内外部不确定性的抗干扰能力。建立无人机运动方程,将运动方程分解为纵向和横侧两个独立运动分量,设计小扰动条件下的外环控制律;提出一种纵向高度通道总能量控制系统(TECS),将速度控制与航迹控制分离;横侧轨迹跟踪采用L1非线性路径跟踪制导算法,提高曲线跟踪能力和抗风能力。实飞实验数据证明了该方法的有效性。最后,设计了一种控制律。
摘要:在本演讲中,我将重点介绍用于分析和分解张量数据的快速方法。在演讲的第一部分中,我将介绍一种我们为对称张量分解提出的方法。我们为算法及其相关的非凸优化问题提供了几种保证。此外,我们从经验上观察到该方法比现有的分解算法要快大约一个数量级,并且对噪声也很强。在演讲的第二部分中,我将介绍时刻的隐式方法。多元随机变量的高阶力矩遭受维数的诅咒:条目的数量按矩的顺序为指数尺度。我们引入了一种隐式方法,该方法允许估算参数而不明确形成矩,以免避免维度的诅咒。我们使用这种方法来估计高斯混合模型的参数,获得了一种具有与最先进方法相似的计算和存储成本的方法,例如预期最大化,并为多变量变量的瞬间方法开辟了大门。最后,我将提及几种相关的方法和应用程序,包括有关使用谈话第一部分中引入的方法进行分解时刻张力张量的持续工作。
摘要 具有过渡飞行能力的微型飞行器,或简称为混合微型飞行器,结合了固定翼配置在续航能力方面的有益特性以及旋翼机的垂直起降能力,可在典型任务中执行五个不同的飞行阶段,例如垂直起飞、过渡飞行、前飞、悬停和垂直着陆。这种有前途的微型飞行器类别比传统微型飞行器具有更宽的飞行包线,这对控制界和空气动力学设计师都意味着新的挑战。混合微型飞行器的主要挑战之一是过渡飞行阶段气动力和力矩的快速变化,很难准确建模。为了克服这个问题,我们提出了一种飞行控制架构,它使用智能反馈控制器实时估计和抵消这些快速动态。所提出的飞行控制器旨在稳定混合微型飞行器的姿态以及它在所有飞行阶段的速度和位置。通过使用无模型控制算法,所提出的飞行控制架构无需精确的混合微型飞行器模型,因为该模型成本高昂且耗时。介绍了一套全面的飞行模拟,涵盖了尾座微型飞行器的整个飞行包线。最后,进行了真实飞行测试以比较模型
摘要 利用 H 2 /NH 3 的反应离子束蚀刻 (RIBE) 系统蚀刻磁隧道结 (MTJ) 材料,例如 CoFeB、Co、Pt、MgO,以及硬掩模材料,例如 W 和 TiN。与使用纯 H 2(无蚀刻)和 NH 3 的蚀刻相比,使用 H 2 和 NH 3 的混合气体,尤其是 H 2 /NH 3 (2:1) 比例,可以观察到 MTJ 相关材料的更高蚀刻速率和相对于掩模材料的更高蚀刻选择性 (>30)。此外,在蚀刻的磁性材料表面上没有观察到明显的化学和物理损伤,对于通过 H 2 /NH 3 (2:1) 离子束蚀刻的 CoPt 和 MTJ 纳米级图案,可以观察到高度各向异性的蚀刻轮廓 >83 ◦,没有侧壁再沉积。与 H 2 离子束或 NH 3 离子束相比,H 2 /NH 3 (2:1) 离子束对磁性材料(如 CoFeB)的蚀刻速率更高,这被认为与挥发性金属氢化物(MH,M = Co、Fe 等)的形成有关,这是通过暴露于 NH 3 离子束中在 CoFeB 表面形成的 M-NH x(x = 1 ∼ 3)的还原形成的。人们认为,H 2 /NH 3 RIBE 是一种适用于蚀刻下一代纳米级自旋转移力矩磁性随机存取存储器 (STT-MRAM) 设备的 MTJ 材料的技术。