摘要:与大规模硅制造兼容的硅光子学是一个破坏性的光子平台,表明对行业和研究领域(例如量子,神经形态计算,LIDAR)具有重要意义。尖端应用,例如高容量相干的光学通信和杂差激元,已升级对集成窄线宽激光源的需求。为此,这项工作旨在通过开发高性能混合III-V/硅激光来满足这一要求。开发的集成激光器利用单个微孔谐振器(MRR),演示了超过45 dB的侧模式抑制比(SMSR)的单模操作,激光输出功率高达16.4 mW。远离需要多个复杂控制的当前混合/异质激光体系结构,开发的激光体系结构仅需要两个控制参数。重要的是,这是通过降低表征这些激光器的复杂性来简化工业采用的。通过简洁的结构和控制框架,实现了2.79 kHz的狭窄激光线宽,低相对强度噪声(RIN)达到-135 dB/hz。此外,在测量10 dB的信噪比(SNR)的情况下,证明了12.5 GB/s的光学数据传输。
在质子辐照下,使用扫描电子显微镜 (SEM) 研究了来自同一制造商的三种 SDRAM,其技术节点尺寸分别为 110、72 和 63 nm。表征了辐射引起的故障,并比较了不同部件类型之间的故障。被测设备 (DUT) 经过质子辐照,并以卡住位和单比特翻转 (SBU) 的形式经历了单粒子效应 (SEE)。对具有 SBU 并在辐照期间卡住的比特的数据保留时间进行分析,结果显示保留时间退化模式相似,这表明这三种部件类型中的 SBU 和卡住位可能是由相同机制引起的。还在辐照前后进行了详细的数据保留时间分析,以研究辐照后和退火一段时间后数据保留时间的变化。发现最大的辐射引起的保留时间损失发生在退火过程中,但辐照后直接受影响最小的比特的数据保留时间随着退火时间而减少。 SEM 成像显示,不同测试部件类型之间的存储单元结构存在差异。节点尺寸最大的器件对辐射最敏感,无论是 SEE 还是累积辐射效应。
摘要:本文研究了电池电化学模型的校准和验证问题,这是朝着准确估算电池重要变量的强制性步骤,例如充电状态(SOC)和健康状况(SOH)。在这里,考虑了单个粒子模型(SPM),该模型通过抛物线偏微分方程(PDES)数学描述了电池内部管理现象,但众所周知,其参数很难测量或估计。通过线性有限维模型适当地近似此模型后,这里提出了SPM校准的系统过程,并验证了电池循环在电动车辆应用中发出的实际数据,即,在标准驾驶周期的情况下。在一种新颖的SOC估计方法中,适当校准的SPM以及电压和电流的度量可以在分析上将内部空间分布的离子浓度与equlibrium浓度连接起来,这反过来又是电池SOC的图像。结果表明,SPM可以可靠地预测电池内部离子的浓度,并进一步用于社会准确估计。
电离辐射会导致电子系统的退化。对于存储设备,这种现象通常表现为存储数据的损坏,在某些情况下,在操作过程中电流消耗突然增加。在这项工作中,我们提出了增强的实验仪器,以对电子系统进行深入的单粒子效应 (SEE) 监控和分析。特别是,我们专注于存储设备中的单粒子闩锁 (SEL) 现象,其中测试需要电流监控和控制。为了揭示所提出的仪器的特性和功能,我们展示了 PROBA-V ESA 卫星上使用的 SRAM 存储器案例研究的结果。在这项研究中,我们在两个不同的辐照设施中使用质子和重离子进行了实验活动,展示了仪器的功能,例如同步、高采样率、快速响应时间和灵活性。使用这种仪器,我们可以报告观察到的 SEE 的截面,并进一步研究它们与观察到的电流行为的相关性。值得注意的是,它可以识别 95% 的单事件功能中断 (SEFI) 是在 SEL 事件期间触发的。
摘要 盲目百万富翁(BM)问题是初始百万富翁问题的扩展版本,用于比较不同组之间参与者秘密的总和。作为量子安全多方计算的一个新课题,现有的具有某些特殊纠缠态的协议在实践中可能不易实现。本研究首次提出了一种非纠缠方法解决具有特殊d级单粒子态的量子盲目百万富翁(QBM)问题。为了保护传输秘密的机密性,该协议利用了随机生成的d级单粒子态的性质。此外,使用简单的移位操作对各个秘密进行编码。详细的安全性分析表明,该协议不受内部和外部威胁的影响。所提出的方法不仅可以用来解决盲目百万富翁问题,还可以作为解决其他安全多方计算问题的基本模块。
CMOS 技术的巨大成功以及由此带来的信息技术进步,无疑归功于 MOS 晶体管的微缩。三十多年来,MOS 晶体管的集成度和性能水平不断提高。随后,为了提供功能更强大的数字电子产品,MOSFET 的制造尺寸越来越小、密度越来越高、速度越来越快、成本越来越低。近年来,微缩速度不断加快,MOSFET 栅极长度已小于 40 纳米,器件已进入纳米世界(图 1)[1]-[2]。所谓的“体”MOSFET 是微电子技术的基本和历史性关键器件:在过去三十年中,其尺寸已缩小了约 10 3 倍。然而,体 MOSFET 的缩放最近遇到了重大限制,主要与栅极氧化物(SiO 2 )漏电流 [3]-[4]、寄生短沟道效应的大幅增加以及迁移率急剧下降有关 [5]-[6],这是由于高度掺杂的硅衬底正是为了减少这些短沟道效应而使用的。
辐射引起的效应对现代 CMOS 技术的可靠性构成威胁。晶体管尺寸的缩小、电源电压的降低和工作频率的提高,已导致单粒子瞬变 (SET) 成为纳米 CMOS 晶体管的主要可靠性问题 [1–3]。质子、中子或重离子等高能粒子可以撞击芯片并产生电流放电。在组合逻辑中观察到的这种电流脉冲称为 SET。当此脉冲到达存储元件并改变其值时,会导致称为单粒子翻转 (SEU) 的错误。瞬变和存储翻转这两种效应在文献中被称为软错误 (SE),因为它们不是破坏性效应。文献中介绍了几种用于评估数字电路对 SET 和 SEU 的鲁棒性的技术。基于模拟的方法允许在复杂电路的设计流程中进行早期评估,并采用缓解策略来实现应用约束。例如,可以进行 TCAD(技术计算机辅助设计)模拟,以模拟粒子与组成电子设备的材料之间的相互作用。尽管这种方法可以达到最高的精度,但它不是一种可扩展的方法,通常用于研究基本结构(如 pn 结或单个晶体管)中的基本机制。另一种计算成本较低的方法是 TCAD 混合模式方法,其中仅将打击晶体管建模为 TCAD 设备,而其余设备则使用 SPICE 建模进行模拟。在这种情况下,可以研究多个晶体管,从而模拟逻辑门和小电路块。为了提高可扩展性,SPICE 中基于电流的模型可以模拟
摘要 — 在本文中,我们使用质子束描述了 NVIDIA Xavier 系列片上系统 (SoC) 中的两个嵌入式 GPU 设备。我们比较了分别针对商业和汽车应用的 NVIDIA Xavier NX 和工业设备。我们使用不同的功率模式评估了两个模块及其子组件(CPU 和 GPU)的单粒子效应 (SEE) 率,并首次尝试使用其基于 ARM 的系统中包含的在线测试工具来识别它们的确切来源。我们的结论是,SoC 的 CPU 复合体中最敏感的部分是各种缓存结构的标签阵列,而在 GPU 中没有观察到任何错误,可能是因为在辐射活动期间,与应用程序的 CPU 部分相比,它的执行速度更快。
摘要:静态随机存取存储器(SRAM)器件作为重要的星载电子设备,在其执行空间任务过程中不可避免地受到空间高能粒子辐照的影响。为揭示高能粒子对28nm工艺SRAM造成单粒子效应(SEE)的机理,基于针孔重离子微束装置,对单粒子翻转(SEU)敏感区定位和多单元翻转(MCU)分布特性进行了研究。结果表明:微束辐照引起的SEU实际范围为4.8μm×7.8μm。通过小步长(每步1μm)移动设备台,建立了SEU敏感区的一维定位方法,可以降低定位精度对束斑尺寸的依赖,定位精度可提高到1μm。 MCU测试表明,翻转模式与相邻SRAM单元内敏感区域的间距密切相关,并且通过阱接触和位交错可以降低MCU的概率。
TL7700-SEP 中主要的单粒子效应 (SEE) 事件是单粒子闩锁 (SEL)。从风险/影响的角度来看,SEL 的发生可能是最具破坏性的 SEE 事件,也是太空应用的最大隐患。TL7700-SEP 使用了双极工艺 JI1。CMOS 电路可能会产生 SEL 和 SEB 敏感性。如果高能离子通过引起的过量电流注入足以触发寄生交叉耦合 PNP 和 NPN 双极结构的形成(形成于 p-sub 和 n-well 以及 n+ 和 p+ 触点之间),则可能会发生 SEL。单事件引发的寄生双极结构在电源和接地之间形成高电导路径(产生通常比正常工作电流高几个数量级的稳态电流),该路径持续存在(“锁定”),直到断电或设备被高电流状态破坏。TL7700-SEP 在重离子 LET EFF 高达 43 MeV-cm 2 /mg 时未表现出 SEL,通量为 10 7 离子/cm 2 且芯片温度为 125°C。