1. Dellinger, DJ 等人,《使用 2'-O-硫代氨基甲酸酯保护的核苷亚磷酰胺在固相中化学合成 RNA 的简化流程》,《美国化学会志》133,11540– 11556 (2011);DOI:10.1021/ja201561z
脱靶效应(即 DNA 切割在靶区域之外进行)是限制 CRISPR/Cas9 基因组编辑系统应用的一个主要问题。CRISPR 脱靶预测器 (CROP) 是一个独立程序,旨在通过预测向导 RNA 的脱靶倾向来解决此问题,从而允许用户选择最佳向导。CROP 使用的方法包括生成替换、删除和插入组合,然后将其映射到参考基因组中。基于这些映射的变体,进行评分和比对,然后报告为一个表格,该表格包含来自给定基因序列的所有向导 RNA 的脱靶倾向。该程序的 Python 脚本可从以下网址免费获取:https://github.com/vaprilyanto/crop。关键词:基因组编辑、向导 RNA、脱靶。简介
根据AGM电池制造商的说法,电池寿命降低的最大原因是维护不良,放电,收费和收费过高。客户有责任清洁和维护电池连接,并避免排放量低于50%的排放深度(DOD)。AGM充电器可通过大多数电池制造商提供;但是,只有在充电期内将电池停用时,它们才有效。(充电时未操作12伏配件和设备。)这对于RV生活是不切实际的,因为RV的转换器/充电器为12伏系统提供电源,并同时向电池充电。RV转换器/充电器的电流功能较高,电压较低,而电压则比“最佳” AGM电池充电器。
图1。Meow在长阅读测序数据中识别差异甲基化区域。A. Meow需要一组带有填充的MM和ML标签的对齐的BAM文件以及包含感兴趣区域列表的床文件,例如CPG岛,以构建参考数据库。在构建参考数据库后,可以在参考队列中执行一项输出分析,以识别该数据集中的唯一差异甲基化区域(DMR)。也可以使用已经构建的参考数据库来识别DMR的测试样本运行。两种方法的输出都在表或图形格式中获得。B.与已知具有Prader-Willi综合征的测试样品相比,与19个随机样品的对照数据库相比,显示了已知具有Prader-Willi综合征的测试样品的显着差异甲基化的位点(红色),该数据库是1000个基因组项目ONT测序联盟的一部分。C. Meow生成图形,说明了测试样品和对照数据集之间甲基化频率的显着差异。所示的五个DMR表示(b)中的显着值。D.色带图显示了查询中每个C和G的甲基化频率,相对于控制数据库甲基化频率在同一位置的平均值和标准误差。
CRISPR-Cas9 系统广泛用于靶向基因组工程。Cpf1 是 CRISPR 效应子之一,通过识别富含胸腺嘧啶的原间隔区相邻基序 (PAM) 序列来控制靶基因。Cpf1 对向导 RNA 中的错配的敏感性高于 Cas9;因此,脱靶序列识别和切割较低。但是,它可以容忍原间隔区中远离 PAM 序列 (TTTN 或 TTN) 的区域中的错配,并且当 Cpf1 活性因治疗目的而得到改善时,脱靶切割问题可能会变得更加成问题。在我们的研究中,我们研究了 Cpf1 的脱靶切割,并修改了 Cpf1 (cr)RNA 以解决脱靶切割问题。我们开发了一种 CRISPR-Cpf1,它可以通过用 DNA 部分替换 (cr)RNA 来改变碱基配对的能量势,从而以高度特异性和有效的方式诱导靶 DNA 序列中的突变。提出了一个模型来解释嵌合 (cr)RNA 引导的 CRISPR-Cpf1 和 SpCas9 切口酶如何在细胞内基因组中有效发挥作用。在我们的结果中,当使用嵌合 DNA-RNA 引导进行基因组编辑时,CRISPR-Cpf1 在细胞水平上诱导的脱靶突变较少。这项研究有可能用于治疗无法治愈的癌症
本演示文稿包含《1995 年私人证券诉讼改革法案》所定义的“前瞻性陈述”,涉及重大风险和不确定性,包括有关公司计划(包括 VERVE-101)的潜在优势和治疗潜力的陈述。本演示文稿中包含的所有陈述(历史事实陈述除外),包括有关公司战略、未来运营、未来财务状况、前景、计划和管理目标的陈述,均为前瞻性陈述。“预期”、“相信”、“继续”、“可能”、“估计”、“预计”、“打算”、“可能”、“计划”、“潜在”、“预测”、“项目”、“应该”、“目标”、“将”、“会”和类似表达旨在识别前瞻性陈述,但并非所有前瞻性陈述都包含这些识别词。任何前瞻性陈述均基于管理层当前对未来事件的预期,并受多种风险和不确定因素的影响,这些风险和不确定因素可能导致实际结果与此类前瞻性陈述中所述或暗示的结果存在重大不利差异。这些风险和不确定性包括但不限于与公司有限的经营历史有关的风险;公司及时提交和获得其产品候选物的监管申请批准的能力;推进其产品候选物的临床试验;按照预期的时间表或完全启动、招募和完成其正在进行的和未来的临床试验;正确估计公司产品候选物的潜在患者群体和/或市场;在临床试验中复制在 VERVE-101、VERVE-102 和 VERVE- 201 的临床前研究和/或早期临床试验中发现的积极结果;在当前和未来临床试验中按照预期的时间表推进其产品候选物的开发;获得、维护或保护与其产品候选物相关的知识产权;管理费用;并筹集实现其业务目标所需的大量额外资本。有关其他风险和不确定性以及其他重要因素的讨论,其中任何因素都可能导致公司的实际结果与前瞻性陈述中的结果不同,请参阅“风险因素”部分,以及公司最近向美国证券交易委员会提交的文件和公司未来向美国证券交易委员会提交的其他文件中对潜在风险、不确定性和其他重要因素的讨论。此外,本演示文稿中包含的前瞻性陈述代表公司截至本新闻稿之日的观点,不应被视为代表公司截至本新闻稿之日之后任何日期的观点。公司预计后续事件和发展将导致公司的观点发生变化。然而,尽管公司可能会选择在未来某个时间点更新这些前瞻性陈述,但公司明确表示不承担任何此类义务。
合成生物学的目标之一是能够设计具有可编程输入和输出的任意分子电路。此类电路将电子电路和自然电路的特性结合起来,以可预测的方式在活细胞内处理信息。基因组编辑是合成分子电路的潜在强大组成部分,无论是用于调节目标基因的表达还是用于将信息稳定地记录到基因组 DNA 中。然而,将蛋白质-蛋白质相互作用或诱导接近等分子事件编程为基因组编辑的触发因素仍然具有挑战性。在这里,我们展示了一种称为“P3 编辑”的策略,它将蛋白质-蛋白质接近与功能性 CRISPR-Cas9 双组分向导 RNA 的形成联系起来。通过设计 crRNA:tracrRNA 相互作用,我们证明了各种已知的蛋白质-蛋白质相互作用以及化学诱导的蛋白质结构域二聚化可用于激活人类细胞中的原始编辑或碱基编辑。此外,我们还探索了 P3 编辑如何整合基于 ADAR 的 RNA 传感器的输出,从而可能允许特定 RNA 在更大的电路中诱导特定的基因组编辑。我们的策略增强了基于 CRISPR 的基因组编辑的可控性,有利于其在活细胞中部署的合成分子回路中的应用。
合成生物学的目标之一是能够设计具有可编程输入和输出的任意分子电路。此类电路将电子电路和自然电路的特性结合起来,以可预测的方式在活细胞内处理信息。基因组编辑是合成分子电路的潜在强大组成部分,无论是用于调节目标基因的表达还是用于将信息稳定地记录到基因组 DNA 中。然而,将蛋白质-蛋白质相互作用或诱导接近等分子事件编程为基因组编辑的触发因素仍然具有挑战性。在这里,我们展示了一种称为“P3 编辑”的策略,它将蛋白质-蛋白质接近与功能性 CRISPR-Cas9 双组分向导 RNA 的形成联系起来。通过设计 crRNA:tracrRNA 相互作用,我们证明了各种已知的蛋白质-蛋白质相互作用以及化学诱导的蛋白质结构域二聚化可用于激活人类细胞中的原始编辑或碱基编辑。此外,我们还探索了 P3 编辑如何整合基于 ADAR 的 RNA 传感器的输出,从而可能允许特定 RNA 在更大的电路中诱导特定的基因组编辑。我们的策略增强了基于 CRISPR 的基因组编辑的可控性,有利于其在活细胞中部署的合成分子回路中的应用。
感谢您对太阳能光伏(PV)技术的兴趣,并花时间阅读此出版物。信息是考虑太阳能光伏系统的消费者的主要资源和实用指南。该出版物集中在网格相互作用的太阳能光伏系统上,并具有三个主要部分,对于理解太阳能PV至关重要。他们是;捕获阳光,指导和转移产生的光伏电力,并在网格相互作用的框架内利用电力。该消费者指南不是技术手册,而是代表购买和安装安全且生产效率的PV系统所必需的因素,选项和决策步骤。
以下是使用 DharmaFECT™ 1-4 转染试剂(目录号 T-2001、T-2002、T-2003、T-2004)将合成向导 RNA 转染到表达 Cas9 的培养哺乳动物细胞中的简化方案。合成向导 RNA 可以是合成的单向导 RNA,也可以是与 tracrRNA 复合的合成 crRNA。适用于完成细胞系优化后使用。有关完整详细信息以及优化指南,请参阅技术手册。