在这项研究中,我们生成并比较了三个针对马铃薯(卵巢结核)制成的胞苷碱基编辑器(CBE),该量子量其最多赋予了原生质体池中所有等位基因的43%C-T转换。早些时候,基因编辑的马铃薯植物是通过聚乙烯二烯介导的CRISPR/CAS9转化原生质体的转化而成功产生的。在一项研究中,通过用内源性马铃薯ST U6启动子替换U6-1启动子的标准拟南芥,从而获得了3 - 4倍的编辑效率。在这里,我们使用了这种优化的构建体(SP Cas9/ st u6-1 :: grna1,Target GRNA序列GGTC 4 C 5 TTGGAGC 12 AAAAAC 17 TGG)用于生成CBES量身定制的马铃薯,并测试了用于C-T碱基编辑的CBES在Granule-Bounchase-bound starch synthase 1 Gene中的C-T碱基编辑。首先,将链球菌CAS9转化为(D10A)Nickase(NCAS9)。接下来,来自人hapobec3a(A3a),大鼠(EVO_RAPOBEC1)(RA1)或Sea Lamprey(EVO_ PM CDA1)(CDA1)的三种胞质脱氨酶之一(cda1)与NCAS9和A尿素 - DNA Glycosylase融合了C-Encas9(CDA1)与每种模块化的链接。CBE的总体高度有效,A3A具有最佳的总体基础编辑活动,平均为34.5%,34.5%和27%的C-T转换为C4,C5和C12,而CDA1的平均基础编辑活动的平均基础编辑活性为34.5%,34%,34.5%,14.25%C4和C4,C4和C4,C4和C4,C4和C4,C4。ra1在C4和C5时表现出平均基础编辑活性为18.75%,19%的基础编辑活动,是唯一在C12时显示C-TO-T转换的基本编辑器。
胃癌 (GC) 是全球第五大常见恶性肿瘤,也是第四大癌症相关死亡原因。尽管使用了多模式围手术期化疗 (pCT),但 GC 仍逐渐产生化学耐药性,因此,确定合适的靶点以克服耐药性至关重要。在潜在的生物标志物中,碳酸酐酶 IX (CAIX) - 与几种实体癌的不良预后相关 - 最受关注。在一组接受围手术期 FLOT(即亚叶酸钙、5-氟尿嘧啶、多西他赛和奥沙利铂)或 FOLFOX(即亚叶酸钙、5-氟尿嘧啶和奥沙利铂)的 GC 患者中,与有反应组相比,无反应患者的肿瘤 CAIX 表达增加。此外,与对照组相比,诱导对 5-氟尿嘧啶、紫杉醇、顺铂或 5-氟尿嘧啶、奥沙利铂和多西他赛组合产生耐药性的 GC 细胞系 CAIX 表达过高。因此,与低表达细胞相比,CAIX 高表达的 GC 细胞表现出更高的治疗耐药性。值得注意的是,SLC0111 显著改善了野生型和耐药型 GC 细胞的治疗反应。总体而言,这些数据表明 CAIX 与 GC 药物耐药性之间存在相关性,凸显了 SLC-0111 在重新使 GC 细胞对 pCT 敏感方面的潜力。
剂量调整的证据有限,eviQ 上的建议仅供参考。他们通常是保守的,强调安全。任何剂量调整都应基于临床判断和个体患者的情况,包括但不限于治疗意图(治愈性与姑息性)、抗癌方案(单一疗法与联合疗法与化疗与免疫疗法)、癌症生物学(部位、大小、突变、转移)、其他治疗相关副作用、其他合并症、体能状态和患者偏好。建议的剂量调整基于临床试验结果、产品信息、已发布的指南和参考委员会共识。除非另有说明,否则剂量减少适用于每个单独的剂量,而不适用于总天数或治疗周期持续时间。除非另有说明,否则非血液学分级基于不良事件通用术语标准 (CTCAE)。肾脏和肝脏的剂量调整已尽可能标准化。有关更多信息,请参阅剂量注意事项和免责声明。
个体患者的状况包括但不限于治疗意图(治疗性与姑息治疗),抗癌方案(单一与联合疗法与化学疗法与化学疗法与免疫疗法),癌症的生物学,大小,大小,突变,转移酶的生物学(转移,转移,转移),其他相关副作用,临时性临时性,对患者的临时性,对临床效果进行了调整。指南和参考委员会共识。降低剂量适用于每个单独剂量,除非另有说明,否则不适用于治疗周期的总天数或持续时间。非血液学等级基于不良事件的共同术语标准(CTCAE),除非另有说明。肾脏和肝剂量修饰已在可能的情况下进行标准化。有关更多信息,请参见剂量注意事项和免责声明。
与联合疗法、化疗和免疫疗法相比)、癌症生物学(部位、大小、突变、转移)、其他治疗相关副作用、其他合并症、体能状态和患者偏好。建议的剂量调整基于临床试验结果、产品信息、已发布的指南和参考委员会共识。除非另有说明,否则剂量减少适用于每个单独的剂量,而不适用于总天数或治疗周期持续时间。除非另有说明,非血液学分级基于不良事件常用术语标准 (CTCAE)。肾脏和肝脏剂量调整已尽可能标准化。有关更多信息,请参阅剂量注意事项和免责声明。
氟尿嘧啶是嘧啶尿嘧啶的类似物,因此可作为嘧啶拮抗剂。1 氟尿嘧啶有三种可能的作用机制。2 首先,氟尿嘧啶代谢物氟脱氧尿苷单磷酸 (FdUMP) 与尿嘧啶竞争与胸苷酸合成酶 (TS) 和叶酸辅因子结合。3 这会导致胸苷生成减少,从而导致 DNA 合成和修复减少,最终导致细胞增殖减少。亚叶酸钙 (甲酰四氢叶酸,甲酰-FH 4 ) 通过稳定 FdUMP 与 TS 的结合来增强氟尿嘧啶的作用。其次,氟尿嘧啶代谢物氟脱氧尿苷三磷酸 (FdUTP) 被掺入 DNA,从而干扰 DNA 复制。 2 最后,氟尿嘧啶代谢物氟尿苷-5-三磷酸 (FUTP) 被掺入 RNA 中,取代尿苷三磷酸 (UTP),产生假 RNA,干扰 RNA 加工和蛋白质合成。4 氟尿嘧啶是细胞周期特异性的(S 期)。3
摘要 CRISPR/Cas9 基因编辑彻底改变了利什曼病的病原体利什曼原虫的功能丧失实验。然而,由于利什曼原虫缺乏功能性非同源 DNA 末端连接途径,因此获得无效突变体通常需要额外的供体 DNA、选择与药物耐药性相关的编辑或耗时的克隆分离。因此,目前无法在不同条件下和多种利什曼原虫物种中进行全基因组功能丧失筛选。在这里,我们报告了一个克服这些限制的 CRISPR/Cas9 胞嘧啶碱基编辑器 (CBE) 工具箱。我们利用利什曼原虫中的 CBE 通过将胞嘧啶转化为胸腺嘧啶来引入终止密码子,并创建了用于动基体中 CBE 引物设计的 http://www.leishbaseedit.net/。通过报告基因检测以及针对 L. mexicana 、 L. major 、 L. donovani 和 L. infantum 中的单拷贝和多拷贝基因,我们展示了该工具如何通过仅表达一个单向导 RNA 来有效生成功能性无效突变体,在非克隆群体中达到高达 100% 的编辑率。然后,我们生成了针对利什曼原虫优化的 CBE,并成功地针对质粒文库传递的 L. mexicana 中的功能丧失筛选中的必需基因。由于我们的方法不需要 DNA 双链断裂、同源重组、供体 DNA 或克隆分离,我们相信这首次使通过质粒文库传递在利什曼原虫中进行功能性遗传筛选成为可能。
胞嘧啶碱基编辑器 (CBE) 可实现可编程的基因组 C·G 到 T·A 转换突变,通常包含经过修饰的 CRISPR-Cas 酶、天然存在的胞嘧啶脱氨酶和尿嘧啶修复抑制剂。先前的研究表明,利用天然存在的胞嘧啶脱氨酶的 CBE 可能导致无引导的全基因组胞嘧啶脱氨。尽管随后报道了可减少随机全基因组脱靶的改进型 CBE,但这些编辑器的靶向性能可能不理想。本文,我们报告了使用 TadA 的工程变体 (CBE-T) 的 CBE 的生成和表征,这些变体可在序列多样的基因组位点上实现高靶向 C·G 到 T·A,在原代细胞中表现出强大的活性,并且不会导致全基因组突变的可检测升高。此外,我们报道了胞嘧啶和腺嘌呤碱基编辑器 (CABE),它们可催化 A 到 I 和 C 到 U 编辑 (CABE-T)。与 ABE 一起,CBE-T 和 CABE-T 可使用实验室进化的 TadA 变体对所有转换突变进行可编程安装,与之前报道的 CBE 相比,这些变体具有更好的特性。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(此版本发布于2023年4月30日。; https://doi.org/10.1101/2023.04.27.27.538309 doi:biorxiv Preprint
最近,人工智能在许多领域(1-3)取得了令人兴奋的成就,该领域通过结合各种人工智能技术,尤其是深度学习与医学理论,为人类提供精确的诊断和治疗服务(4)。DNA 4MC是一种表观遗传变异,可能与消化系统癌症的发生有关。DNA甲基化在防御可重复的重复元件活动,基因沉默,基因组稳定性中起着至关重要的作用。(5)。此外,DNA甲基化模式的改变可能导致疾病的发生,特别是由环境因素和衰老引起的癌症(6,7)。DNA 4MC位点防御宿主DNA免受限制酶的降解。此外,它还纠正了原核DNA复制的误差,并调节了原核生物的DNA复制和生成周期(8)。因此,DNA甲基化的鉴定对于研究生物学和医学的作用机理非常重要。因此,在人工智能中应用深度学习来检测DNA甲基化位点可以为智能医学提供辅助功能。