• 有机电子学和有机半导体电子结构的介绍。 • 问题解决环节:有机半导体材料电子能级的确定。 • 有机半导体中的电子传导和电荷传输。 • 问题解决环节:固态有机分子的电导率和迁移率计算。 • 有机场效应晶体管 (OFET) 器件的有机半导体。 • 问题解决环节:确定 OFET 器件特性和有机太阳能电池效率。 • 有机发光器件 - 工作原理和器件。 • 有机光伏:材料开发和器件制造的现状。 • 染料敏化太阳能电池 (DSSC):理论、制造和当前情景。 • 钙钛矿太阳能电池 (PSC):概述。
类脑计算是借鉴脑科学基本原理,打破 “ 冯诺依曼 ” 架构束缚的新型计算技术。本研究组将从理论和器件两个方向对类脑计算展开协同 研究。 理论方面:研究类脑计算架构、模型和算法,探索基于类脑计算的类脑智能的基础理论;借鉴神经元模型、神经环路传导、神经编码 及认知、学习、记忆、决策等神经机制,逐步建立和完善类脑处理信息处理的数学 / 计算原理和模型;构建类脑计算和智能的统一理论 框架。为类脑计算器件及系统的发展提供理论基础。 器件方面:基于新材料和新技术,研究新型高性能类脑神经器件,解决一致性差、可靠性差、规模化难等痛点;研究基于类脑神经器 件的网络架构,构建大规模阵列,开展外围电路的研发与设计;研究基于新型类脑器件的感知和计算架构,发展感存、存算、感存算 一体系统。
DOI: 10.7498/aps.71.140101 类脑计算技术作为一种脑启发的新型计算技术 , 具有存算一体、事件驱动、模拟并行等特征 , 为 智能化时代开发高效的计算硬件提供了技术参考 , 有望解决当前人工智能硬件在能耗和算力方面的 “ 不可持续发展 ” 问题 . 硬件模拟神经元和突触功能是发展类脑计算技术的核心 , 而支持这一切实现 的基础是器件以及器件中的物理电子学 . 根据类脑单元实现的物理基础 , 当前类脑芯片主要可以分 为数字 CMOS 型、数模混合 CMOS 型以及新原理器件型三大类 . IBM 的 TrueNorth 、 Intel 的 Loihi 、清华大学的 Tianjic 以及浙江大学的 Darwin 等都是数字 CMOS 型类脑芯片的典型代表 , 旨 在以逻辑门电路仿真实现生物单元的行为 . 数模混合型的基本思想是利用亚阈值模拟电路模拟生物 神经单元的特性 , 最早由 Carver Mead 提出 , 其成功案例有苏黎世的 ROLLs 、斯坦福的 Neurogrid 等 . 以上两种类型的类脑芯片虽然实现方式上有所不同 , 但共同之处在于都是利用了硅基晶体管的 物理特性 . 此外 , 以忆阻器为代表的新原理器件为构建非硅基类脑芯片提供了新的物理基础 . 它们 在工作过程中引入了离子动力学特性 , 从结构和工作机制上与生物单元都具有很高的相似性 , 近年 来受到国内外产业界和学术界的广泛关注 . 鉴于硅基工艺比较成熟 , 当前硅基物理特性是类脑芯片 实现的主要基础 . 忆阻器等新原理器件的类脑计算技术尚处于前沿探索和开拓阶段 , 还需要更成熟 的制备技术、更完善的系统框架和电路设计以及更高效的算法等 .
如果没有汽车、智能手机、电脑等各种产品中所包含的半导体,我们的日常生活就无法实现。另一方面,随着电动汽车(EV)的普及,未来用电量肯定会持续增加。我们需要的是高效利用电力。其中的关键是功率器件(功率半导体)。近年来,作为实现高效利用电力的下一代功率器件材料,碳化硅(SiC)备受关注。住友电工集团旗下的日新离子设备株式会社从 1970 年代开始推动半导体制造工序中不可或缺的离子注入技术的开发,并向市场推出了一流的设备。随着SiC功率器件受到关注,该公司开发了符合社会和市场需求的新型离子注入机,并获得了多方好评。但是,用于SiC功率器件制造的离子注入技术尚未成熟。正在进行产品开发,以实现进一步的发展。通过广泛使用SiC功率器件减少温室气体排放将极大地帮助实现碳中和社会。本期介绍业界第一台专为SiC功率器件设计的离子注入机的开发历史和创新性。
门控量子点是实现可扩展耦合量子比特系统和作为量子计算机基本构件的有前途的候选系统。然而,当今的量子点设备存在必须考虑的缺陷,这阻碍了表征、调整和操作过程。此外,随着量子点量子比特数量的增加,相关参数空间增长到足以使启发式控制变得不可行。因此,开发可靠且可扩展的自主调整方法势在必行。本会议报告概述了当前在自动化量子点设备调整和操作方面面临的挑战,特别关注数据集、基准测试和标准化。我们还介绍了量子点社区提出的关于如何克服这些挑战的见解和想法。我们的目标是为致力于自动化工作的研究人员提供指导和启发。
摘要:电力电子系统对现代社会影响巨大。它们的应用旨在通过最大限度地减少工业化对环境的负面影响(如全球变暖效应和温室气体排放)来实现更可持续的未来。基于宽带隙 (WBG) 材料的功率器件有可能在能源效率和工作方面实现范式转变,而这些转变与基于成熟硅 (Si) 的器件相比毫无二致。氮化镓 (GaN) 和碳化硅 (SiC) 被视为最有前途的 WBG 材料之一,它们可以大大超越成熟 Si 开关器件的性能极限。基于 WBG 的功率器件可以在更高的开关频率下实现快速开关,同时降低功率损耗,因此可以开发高功率密度和高效率的功率转换器。本文回顾了流行的 SiC 和 GaN 功率器件,讨论了相关的优点和挑战,最后介绍了它们在电力电子中的应用。
尽管基于 PCM 的光子器件和电开关取得了重大进展,但将 PCM 集成到标准光子代工工艺中代表了 PCM 的一个重要技术里程碑。代工工艺集成不仅是实现 PCM 器件可扩展制造的切实途径,而且还使整个光子学界能够轻松获得 PCM 组件。值得注意的是,PCM 具有非外延性质和低加工温度,因此很容易实现 CMOS 后端集成,这从它们与 3D XPoint 内存架构的无缝集成中可以看出。我们预计,实现这一里程碑将大大加快 PCM 与大型交换矩阵的集成,并开辟新兴应用,例如任意波前合成、节能光交换和路由、量子光网络以及可扩展神经形态计算。
摘要 量子点发光器件已成为显示应用的重要技术。它们的发射是分别通过空穴和电子导电层传输的正负电荷载流子复合的结果。这些器件中电子或空穴传输材料的选择不仅要求层间能级对齐,而且还要求平衡电子和空穴向复合位点的流动。在这项工作中,我们研究了一种通过控制电荷载流子动力学来优化器件的方法。我们采用阻抗谱来检查电荷载流子通过每一层的迁移率。得出的迁移率值提供了一条路径来估算每个电荷载流子向发光层的跃迁时间。我们认为,当两个电荷载流子向有源层的跃迁时间相似时,可以获得最佳器件结构。最后,我们通过重点优化电子传输层的厚度来检验我们的假设。
分析科学 J-STAGE 预发表论文 2020 年 1 月 17 日收到;2020 年 4 月 7 日接受;2020 年 4 月 17 日在线发表 DOI:10.2116/analsci.20N002
1 米尼奥大学物理中心,4710-057,布拉加,葡萄牙 2 米尼奥大学 IB-S 可持续发展科学与创新研究所,4710-057,布拉加,葡萄牙 3 米尼奥大学聚合物与复合材料研究所 IPC/I3N,4800-058 吉马良斯,葡萄牙 4 BCMaterials,巴斯克材料、应用与纳米结构中心,HU 科技园,48940 Leioa,西班牙 5 IKERBASQUE,巴斯克科学基金会,48013,毕尔巴鄂,西班牙