• QML P 类抗辐射性能保证 (QMLP-RHA) 等级 • 采用小型 SOT-23 封装 • 辐射性能: – 单粒子闩锁 (SEL) 免疫 65MeV-cm 2 /mg – 总电离剂量 (TID) 抗辐射性能保证 (RHA) 高达 100krad (Si) • 支持国防、航空航天和医疗应用 – 单一受控基线 – 一个制造、装配和测试站点 – 金线 – NiPdAu 引线表面涂层 – 可在军用 (-55°C 至 125°C) 温度范围内使用 – 延长产品生命周期 – 产品可追溯性 – 增强型塑封材料,降低排气量 • 低失调电压:±125µV • 低噪声:1kHz 时为 10.8nV/√Hz • 高共模抑制:130dB • 低偏置电流:±10pA • 轨到轨输入和输出 • 宽带宽:4.5MHz GBW • 高压摆率:21V/µs • 高电容负载驱动:1nF • 多路复用器友好型/比较器输入 • 低静态电流:每个放大器 560µA • 宽电源电压:±1.35V 至 ±20V,2.7V 至 40V • 强大的 EMIRR 性能:输入和电源引脚上的 EMI/RFI 滤波器
(1)超出绝对最大评级下列出的压力可能会对设备造成永久损害。这些仅是应力等级,这并不意味着该设备在这些条件下在建议的操作条件下指示的条件以外的任何其他条件。长期暴露于绝对最大评级条件可能会影响设备的可靠性。(2)+和in-中的输入引脚与两个端子之间的反平行二极管相连。大于0.5 V或小于–0.5 V的差分输入信号必须限制为10 mA或更小。(3)输入端子被二极管链接到电源轨道(VS+,VS-)。输入信号大于0.5 v或更少或更少的供应轨必须被限制为10 mA或更少。(4)v S / 2的短路。< / div>
背景和目标:噪声污染是一种环境压力源,主要是由于城市场景中的大量运输而造成的。交通噪音在城市环境中越来越关注,从而影响了公共卫生和福祉。随着城市化的扩展,理解和缓解流量引起的噪声烦恼变得越来越关键。本研究旨在开发一种机器学习模型,以预测沙特阿拉伯利雅得的交通引起的噪声烦恼。该研究探讨了人口统计学,噪声特征和交通状况诸如噪声烦恼之类的因素的影响。方法:在利雅得的21个地点进行了调查,收集了928名参与者的数据。调查包括有关人口统计学的问题(性别,年龄,教育,婚姻状况,职业),交通状况(交通流)和噪音感知(运输噪音,噪音敏感性,感知到的噪音)。采用的采样方法是分层和随机抽样的组合。分层抽样用于确保在调查中按比例表示各种人口统计细分(例如不同的年龄段,性别和教育水平)。结构方程模型用于分析收集的数据并确定因素烦恼的因素。这些重要因素然后用作支持向量机模型的输入变量,旨在预测噪声烦恼。使用均方根误差,平均绝对误差和R平方来评估支持向量机模型的性能。发现:结构方程模型分析表明,性别,年龄,教育水平,交通流量,交通噪音和个人噪声敏感性是噪声烦恼的重要原因。开发的支持向量机模型以1.416的根平方误差和0.90的确定系数达到了高度的精度。噪声敏感性成为影响噪声烦恼的最关键因素。结论:这项研究证明了机器学习的有效性,特别是支持向量机在预测流量引起的噪声烦恼方面的有效性。这些发现突出了个人特征和环境因素在噪声感知中的重要性,并且对于城市规划和缓解噪音策略而言可能是有价值的,从而促进了更弹性的城市环境。对于社区,城市规划师和政策制定者可以使用这些发现来通过实施噪声障碍,优化交通流以及执行更严格的噪音法规来设计无声区域。
在现代物理学的许多领域,利用光场对量子态进行鲁棒控制至关重要。根据平台不同,这可以通过单光子或双光子驱动场来实现单量子比特和纠缠操作[1-3]。控制保真度可以通过使用脉冲整形方案来增强[4]。一种广泛使用的技术是受激拉曼绝热通道(STIRAP)[5,6],它通过耦合到中间态实现两个离散态之间的粒子数转移。STIRAP 的显著优点是它不受中间态自发辐射损失的影响,并且在激光强度等实验条件下对噪声相对不敏感[6]。这使得 STIRAP 在超导电路[7]、囚禁离子[8]、氮空位中心[9]、光机械谐振器[10]、光波导[11]和超冷分子合成[12]中找到了重要的应用。尽管 STIRAP 对激光振幅噪声不太敏感,但它本身对快速激光相位噪声很敏感,因为它依赖于暗态的绝热演化 [6,13] 。为了最大限度地降低相位噪声,需要使用线宽较窄的激光器。这通常是通过主动将光的频率稳定到稳定的参考点(如光学腔)来实现的。这个过程降低了反馈环路带宽内频率的相位噪声,但也会在更高频率下引入额外的噪声。这种高频相位噪声俗称伺服
我们正在寻求一个高度动机,热情的博士候选人,以研究人为噪声如何影响鸟类,采用全面的方法,整合生理,行为和分子分析。这个高度协作的项目需要合作伙伴机构之间频繁的,相互的互动和交流,促进了一个充满活力的刺激环境,以支持早期研究人员的成长和发展。博士学位学生将有机会在多个学科的交集中工作,包括分子生物学,生态生理学和动物行为。
图表 图 1 接收器架构 [7] .................................................................................................... 6 图 2 用于生成 S 参数的输入和输出端口。 [8] ........................................................... 6 图 3 体 CMOS 与 FD-SOI 结构 [9] .............................................................................. 8 图 4 共栅极放大器(左)共源放大器(右) ........................................................ 10 图 5 级联电感退化 CS LNA 原理图 ........................................................................11 图 6 测试台设置 ......................................................................................................................... 14 图 7 Cpad 的参数扫描 ............................................................................................................. 15 图 8 理想元件的 S11 行为 ............................................................................................................. 16 图 9 所需频带的 S21 行为宽度 ............................................................................................................. 17 图 10 S21 带宽 ............................................................................................................................. 18 图 11 理想元件的噪声系数 ............................................................................................................. 19 图 12 增益(单位为 dBm) ............................................................................................................. 20 图 13 非理想元件的 S11 行为 ............................................................................................................. 21 图 14 非理想元件的 S21 行为........................................................................... 22 图 15 S21 带宽 ...................................................................................................................... 23 图 16 非理想元件的噪声系数 ...................................................................................................... 24 图 17 功率增益 ...................................................................................................................... 25 图 18 完整布局 ...................................................................................................................... 26 图 19 电阻器 MOSFET 和电容器的放大布局。 ............................................................. 27
在两个空间维度中,准长范围超导的熔化是通过涡流 - 抗抗反应对的增殖和解开,这是一种被称为Berezinskii-Kosterlitz-kosterlitz-thoubles-thouble(bkt)的现象。尽管已经在大量测量中观察到了这种过渡的特征,但是这些实验通常是复杂的,模棱两可的,无法解决涡流解开过渡的丰富物理。在这里,我们表明局部噪声磁力测定法是一种灵敏的无创探针,可以提供有关比例依赖性涡流动力学的直接信息。尤其是通过解决磁噪声的距离和温度依赖性,可以实验研究涡流气体的重新归一化组流程,并跟踪原位涡旋的发作。特别是,我们预测(i)噪声对温度的非单调依赖性和(ii)局部噪声几乎与BKT转变处的样品 - 探针距离无关。我们还表明,噪声磁力测定法可以区分高斯超导订单参数的流量与拓扑涡流闪光,并可以检测到未结合的涡流的出现。BKT过渡时的弱距离依赖性也可以用来将其与准粒子背景噪声区分开。我们的预测可能在许多非常规超导体的实验范围内。
噪声中型量子 (NISQ) 设备缺乏错误校正,限制了量子算法的可扩展性。在这种情况下,数模量子计算 (DAQC) 提供了一种更具弹性的替代量子计算范式,它通过将单量子位门的灵活性与模拟的稳健性相结合,表现优于数字量子计算。这项工作探讨了噪声对数字和 DAQC 范式的影响,并证明了 DAQC 在缓解错误方面的有效性。我们比较了超导处理器中各种单量子位和双量子位噪声源下的量子傅里叶变换和量子相位估计算法。DAQC 在保真度方面始终超越数字方法,尤其是随着处理器尺寸的增加。此外,零噪声外推通过减轻退相干和固有误差进一步增强了 DAQC,对于 8 量子位实现了 0.95 以上的保真度,并将计算误差降低到 10 −3 的数量级。这些结果证实了 DAQC 是 NISQ 时代量子计算的可行替代方案。
的确,大量利用可再生能源来建造新建筑物,未来的生态区的创建,促进清洁车辆以及高质量的卫生服务使城市国家成为保护地球的保护地点。通过这些众多的生态计划,摩纳哥公国逐渐成为世界领导人之一,就生态城市而言。
