离散时间量子游动 (DQW) 对应于量子细胞自动机的单粒子部分 [1,2]。它们可以模拟许多物理系统,从任意杨-米尔斯规范场中的粒子 [3] 和黑洞附近的无质量狄拉克费米子 [4],到带电量子流体 [5],其他面向物理的应用参见参考文献 [6–16]。此外,DQW 可以看作是经典随机游动 (CRW) [17] 的量子类似物,可以用来构建空间搜索算法,其性能优于 [18] 使用 CRW 构建的算法。连续时间量子游动也可以用于这一目的 [19]。在三维空间中,基于 DQW 的算法 [18,19] 可以在 O (√
自 20 世纪末以来,雷达技术已得到广泛应用,尤其是在海事和航空领域 [1-3]。雷达技术中最重要的课题之一是在背景噪声中探测隐形目标。另一方面,当前量子技术的发展为远程探测提供了新的可能性,从而产生了量子雷达的概念。本文提出了一种基于光子对之间量子纠缠的量子雷达“玩具模型”。这种简单的模型并不追求逼真,而是具有关于量子雷达潜力的教育价值。当前用于传输信息的量子技术的发展引入了“量子雷达”的概念,尽管直到 2008 年 Lloyd 的文章发表之前,这个想法一直没有引起人们的兴趣 [4]。在这篇文章中,Seth Lloyd 表明,与光子对的量子纠缠可以显著提高光频范围内的远程探测灵敏度。这种利用纠缠进行远程检测的方式称为“量子照明”(QI)。自本文发表以来,人们对量子雷达领域的兴趣日益浓厚。该主题已经开展了新的理论和实验研究 [5-12]。围绕量子雷达的研究已经从关注单个光子转向小束光子 [4,11]。同样,研究也从光学频率范围 [4] 转向微波频率范围 [11-13],这更适合雷达应用,但也更具挑战性。在此背景下,目前正在开发新技术,以使微波领域的量子照明成为可能。例如,我们可以引用约瑟夫森结,它能够在低温下直接产生微波纠缠光子。还有光学光子和微波光子之间的耦合 [11]。然后,氮空位中心(称为 NV 中心)也允许产生微波纠缠光子。尽管这种量子雷达的可行性面临巨大困难,但该研究领域仍然非常活跃。量子雷达与传统雷达的用途相同,但其功能依赖于量子力学原理。
随机近似是一类算法,这些算法迭代,递增和随机更新,包括,例如,包括随机梯度下降和时间差学习。分析随机近似算法的一个基本挑战是建立其稳定性,即表明随机矢量迭代几乎肯定是有限的。在本文中,我们将著名的Borkar-Meyn定理从Martingale不同的噪声设定设置扩展到Markovian噪声设置,从而极大地提高了其在强化学习方面的适用性,尤其是在那些具有线性功能近似近似和资格率痕迹的O效性强化学习算法中。我们分析的核心是一些函数的变化变化速率的降低,这两种形式的强大定律和迭代对数定律的形式都暗示。关键字:随机近似,增强学习,稳定性,几乎确定的收敛性,资格跟踪
已符合其他经典技术,例如电容 - 电压或深度瞬态光谱测量值,低频噪声测量是研究材料或设备质量和性能的最敏感工具之一[1]。例如,噪声测量值允许对传感器应用[2]或对半导体设备的深层光谱进行比较[3],并确定某些技术步骤或技术对设备性能降解的影响[4-7]。尽管有所有这些优点,但该技术的一个局限性很难删除所有外部低频噪声源,以确保所测量的噪声仅来自测试的设备或材料。在材料表征的情况下,众所周知,四探针配置足以消除DC甚至白噪声测量中的接触贡献。由于电压或电流触点可能会造成噪声贡献,因此1/F噪声不是这种情况。
本文的原始版本不幸地包含确认部分中的错误。确认部分被错误地发布,因为这项研究得到了文化,体育和旅游研发计划的支持,该计划通过韩国创意内容机构赠款,由文化,体育和旅游部资助(关于神经水印技术的研究,用于版本的AI 3D Content,RS-2024-00348469,Technology of Multos of Technology of Multos of Mytim of Meltion of Technology of Meltion of Technology of Meltion of Technology of Mertion of Mote of Markight Technipers of Mertion of Technologigh RS-2024- 00333068)和韩国国家研究基金会(RS-2024-00346597)。这项工作也得到了Sam-Sung Electronics Co.,Ltd(项目IO220829-02236-01)的支持。,但应该是通过韩国创意局的文化,体育和旅游研发计划的支持,这项研究得到了由文化,体育和旅游业的敏锐的奖励(RS-2024-00345025,
对于估计任意量子过程相位的基本任务,设计了一种基于傅立叶的量子相位估计变体,它使用多个纠缠量子比特的探测信号。对于简单的实际实现,每个探测量子比特都可以单独应用和测量。当量子比特最佳纠缠时,可以获得海森堡增强的估计效率缩放。相位估计协议可以在存在量子相位噪声的情况下同样应用。这使我们能够研究一般量子相位噪声对基于傅立叶的相位估计性能的影响。特别是它揭示了在没有噪声的情况下发现的最佳策略随着噪声的增加逐渐失去其最优性。此外,与无噪声情况相比,在有噪声的情况下,纠缠的存在不再一致有利于估计;存在一个最佳纠缠量来最大化效率,超过该纠缠量就会变得有害。该结果有助于更好地了解量子噪声和纠缠,从而实现量子信号和信息处理。
抽象分子模拟扩展了我们学习生物分子相互作用的能力。由具有不同理化特性的不同脂质组成的生物膜是参与细胞功能的高度动态环境。蛋白质,核酸,聚糖和生物兼容的聚合物是细胞质和脂质膜界面中细胞过程的机械。脂质物种直接调节膜特性,并影响其他生物分子的相互作用和功能。天然分子扩散会导致局部脂质分布的变化,从而影响膜特性。将生物物理和结构膜和生物聚合物的特性投射到二维平面可能是有益的,可以在降低的尺寸空间中量化分子特征,以识别感兴趣界面的相关相互作用,即膜表面或生物聚合物表面接口。在这里,我们提出了一个工具箱,旨在将膜和生物聚合物特性投射到二维平面上,以表征脂质 - 脂质与脂质聚合物接口之间的相互作用模式和空间相关模式。该工具箱包含两个使用MDakits体系结构实施的枢纽,一个用于膜,一个用于生物聚合物,可以独立或一起使用。三个案例研究证明了工具箱在GitHub中具有详细教程的多功能性。该工具箱和教程将定期更新其他功能和决议,以扩展我们对生物分子在二维中的结构 - 功能关系的理解。
摘要 本文介绍并分析了一种专用于 2.4 GHz 无线传感器网络 (WSN) 应用的多模式低噪声放大器 (LNA) 的设计。所提出的无电感器 LNA 采用 28 nm FDSOI CMOS 技术实现,基于共栅极配置,其中嵌入共源级以提高电路的整体跨导。该 LNA 经过专门设计和优化,可解决三种操作模式。重新配置是通过电流调谐以及切换放大晶体管的背栅极来完成的。所提出的实现方式可使品质因数 (FOM) 在不同操作模式下保持恒定。在低功耗模式下,LNA 仅消耗 350 uW。它实现了 16.8 dB 的电压增益 (G v ) 和 6.6 dB 的噪声系数 (NF)。在中等性能模式下,增益和噪声系数分别提高到 19.4 dB 和 5.4 dB,功耗为 0.9 mW。在高性能模式下,增益最大,为 22.9 dB,噪声系数最小,为 3.6 dB,功耗为 2 mW。输入参考三阶截点 (IIP3) 所表示的线性度恒定,接近 -16 dBm。报道的 LNA 仅占用 0.0015 mm 2 。
可扩展量子计算机的发展正进入关键阶段,几种不同的固态量子比特设计已被证明是未来量子计算机基础的有力候选。硅基量子点自旋量子比特就是这样一种候选,它是该领域的一个相对较新的领域,但具有长相干时间和高保真测量和操控的潜力。硅还具有利用工业专业知识和与当前半导体制造技术的兼容性来生产可靠、可重复和可扩展的量子比特设计的显著优势。要大规模开发全功能的量子计算机,单个量子比特设计应紧凑、控制开销低,并与环境的交互最少,以防止量子信息丢失。量子点所经历的主要环境相互作用之一是所有电子设备中都存在的 1 /𝑓 电荷噪声特征。量子点区域的电场波动对半导体自旋量子比特中的单量子比特和多量子比特测量、操控和相干性构成了重大挑战。