1作家和研究人员,艾滋病大学,诺伊达大学2作家和研究人员,帕特纳大学,帕特纳大学摘要,这项研究研究了环境污染与人类遗传学之间的复杂关系,阐明了多方面的机制,这些机制通过这些机制施加了污染物,这些机制施加了基因毒性影响和影响健康的影响。通过生化,基因组和流行病学证据的合成,我们阐明了污染物如何诱导DNA损伤,破坏表观遗传调节以及损害细胞修复机制,从而导致多种不良健康效应,包括癌症,发育异常和生殖分裂。利用多学科方法,包括基因组学,表观基因组学,转录组学,蛋白质组学和代谢组学,我们揭示了污染诱导的遗传突变的分子基础,公开复杂的基因环境相互作用和与疾病病原体有关。人口水平的基因组监测是一种关键工具,用于监测基因毒性负担,为基于证据的干预措施和促进环境正义。期待,跨学科的合作和创新的研究策略有望减轻遗传毒性风险并在环境污染带来的挑战中保护人类遗传完整性。在污染的无数影响中,也许最阴险的是它的能力,能够扰动人类遗传学的微妙平衡,煽动一系列分子事件,这些事件可以达到遗传突变,疾病易感性和不良健康结果。KEYWORDS: Genotoxicity, Environmental pollution, Heavy metals, Polycyclic aromatic hydrocarbons (PAHs), Airborne particulate matter, Pesticides,Industrial chemicals, DNA damage, Epigenetic alterations, DNA repair mechanisms,Genetic susceptibility,Epidemiological studies, Health outcomes, Cancer, Developmental abnormalities, Reproductive disorders, Neurotoxicity,Population基因组学,环境正义,公共卫生干预措施引言环境污染对人类健康和生态完整性构成了巨大威胁,对分子,细胞和生物水平的生物系统产生了极大的影响。了解环境污染物对人类遗传学发挥遗传学作用的机制对于阐明与污染有关的健康障碍的病因以及为缓解和预防制定有效策略至关重要。本引入为对环境污染与人类遗传学之间复杂的相互作用的全面探索奠定了基础。我们踏上了遗传毒性的迷宫途径,穿越了DNA损伤,表观遗传失调和细胞防御机制的分子景观。利用跨越的科学文学
癌症将直接影响超过三分之一人口的生活。DNA 损伤反应 (DDR) 是一个复杂的系统,涉及损伤识别、细胞周期调控、DNA 修复以及最终的细胞命运决定,在癌症病因和治疗中发挥着核心作用。涉及 DDR 靶向的两种主要治疗方法包括:采用抗癌基因毒性剂的组合治疗;以及合成致死,利用偶发性 DDR 缺陷作为癌症特异性治疗的机制。尽管许多 DDR 蛋白已被证明“无法用药”,但基于片段和结构的药物发现 (FBDD、SBDD) 已推进治疗剂的识别和开发。FBDD 已导致 4 种药物(约 50 种药物处于临床前和临床开发阶段),而 SBDD 估计已为 200 多种 FDA 批准药物的开发做出了贡献。基于蛋白质 X 射线晶体学的片段库筛选,尤其是针对难以捉摸或“无法用药”的靶标,可以同时生成命中结果以及蛋白质-配体相互作用和结合位点(正构或变构)的详细信息,从而为化学可处理性、下游生物学和知识产权提供信息。使用一种新颖的高通量基于晶体学的片段库筛选平台,我们筛选了五种不同的蛋白质,命中率约为 2-8%,晶体结构约为 1.8 至 3.2 Å。我们考虑了当前的 FBDD/SBDD 方法以及设计工作的一些典型结果
自噬是一种分解代谢过程,在整个进化过程中一直被保留,用于降解和回收细胞成分和受损细胞器。自噬在各种应激条件下被激活,例如营养缺乏、病毒感染和基因毒性应激,并与其他应激反应途径协同作用,以减轻氧化损伤并维持细胞稳态。其中一种途径是 Nrf2-Keap1-ARE 信号轴,它作为一种内在的抗氧化防御机制,与癌症化学预防、肿瘤进展和耐药性有关。最近的研究发现了自噬受损(由自噬受体蛋白 p62 介导)与 Nrf2 通路激活之间的联系。具体而言,p62 通过选择性自噬促进 Keap1 降解,导致 Nrf2 易位到细胞核中,在那里它转录激活下游抗氧化酶表达,从而保护细胞免受氧化应激。此外,Nrf2 还调控 p62 的转录,从而建立起 p62、Keap1 和 Nrf2 之间的正反馈回路,增强对细胞的保护作用。本文旨在全面综述 Nrf2 和自噬在癌症进展中的作用、Nrf2 通路与自噬之间的调控相互作用以及 Nrf2-自噬信号轴在癌症治疗中的潜在应用。
转录因子 p53 是多种细胞过程的重要调节因子。在存在基因毒性应激的情况下,p53 被激活以促进 DNA 修复、细胞周期停滞和细胞凋亡。在乳腺癌中,p53 的肿瘤抑制活性经常因其负调节因子 MDM2 的过度表达或突变而失活,30-35% 的乳腺癌病例都存在突变。值得注意的是,乳腺癌中 p53 突变的频率高度依赖于亚型,大多数激素受体阳性或管腔亚型保留野生型 p53 状态,而激素受体阴性患者主要携带 p53 突变,具有获得功能致癌活性,导致预后较差。因此,针对不同乳腺癌亚型中的野生型和突变型 p53 的双管齐下策略可能具有临床意义。近年来,基于 p53 的疗法发展迅速,包括独特的小分子化学抑制剂、钉合肽、PROTAC,以及使用载体和工程抗体的几种基于基因的方法。在这篇综述中,我们重点介绍了处于临床前和临床开发阶段的治疗策略,以克服野生型和突变型 p53 乳腺肿瘤中的 p53 失活,并讨论了它们在临床前和临床环境中的功效和局限性。
摘要:哺乳动物细胞不断受到各种 DNA 损伤事件的影响,从而导致 DNA 修复途径的激活。了解 DNA 损伤反应的分子机制有助于开发针对这些途径元素的治疗方法。双链断裂 (DSB) 对细胞活力和基因组稳定性特别有害。通常,使用 DNA 损伤剂(例如电离辐射或基因毒性药物)研究 DSB 修复。这些会在难以控制损伤剂量的非预测基因组位点处引起随机损伤。此类干预不适合研究特定 DSB 位点如何根据局部染色质状态调用不同的 DNA 损伤识别和修复途径。RNA 引导的 Cas9(CRISPR 相关蛋白 9)核酸内切酶是介导靶向基因组改变的强大工具。基于 Cas9 的基因组干预是通过在感兴趣的基因组区域形成 DSB 来实现的。在这里,我们利用基于计算机预测的定制设计的混杂向导 RNA,在人类基因组的特定数量和位置诱导 DSB。这是通过重组 Cas9-向导复合物的电穿孔实现的,它提供了一种通用、低成本且快速的方法,用于在细胞培养模型中诱导受控 DNA 损伤。
MutT 同源物 1 (MTH1) 可从核苷酸池中去除氧化核苷酸,从而防止其掺入基因组,并降低基因毒性。我们之前曾报道 MTH1 是 O6-甲基-dGTP 水解的有效催化剂,这表明 MTH1 还可以清除核苷酸池中的其他甲基化核苷酸。我们在此显示 MTH1 可有效催化 N6-甲基-dATP 水解为 N6-甲基-dAMP,并进一步报道 dATP 的 N6-甲基化可显著增加 MTH1 活性。我们还观察到 MTH1 与 N6-甲基-ATP 的活性,尽管水平较低。我们发现 N6-甲基-dATP 会在体内整合到 DNA 中,与未注射 N6-甲基-dATP 的胚胎相比,微注射 N6-甲基-dATP 的 MTH1 敲除斑马鱼卵子发育而成的胚胎中 N6-甲基-dA DNA 水平升高就是明证。远亲脊椎动物的 MTH1 同源物中存在 N6-甲基-dATP 活性,这表明其具有进化保守性,也表明这种活性很重要。值得注意的是,在相关的 NUDIX 水解酶中,N6-甲基-dATP 活性是 MTH1 所独有的。此外,我们展示了 N6-甲基-dAMP 结合的人类 MTH1 的结构,揭示了 N6-甲基被容纳在疏水活性位点亚口袋内,这解释了为什么 N6-甲基-dATP 是良好的 MTH1 底物。据报道,DNA 和 RNA 的 N6 甲基化具有表观遗传作用并影响 mRNA 代谢。我们认为 MTH1 与腺苷脱氨酶样蛋白异构体 1 (ADAL1) 协同作用
DNA 是最重要的分子之一,包含生命过程所需的所有遗传信息 [1]。每天,人类细胞中的 DNA 都会经历数千到数百万次损伤事件,这些损伤事件要么是由内源性(内部代谢过程)引起的,要么是由外源性因素引起的,例如紫外线辐射、暴露于基因毒性化学物质以及 DNA 复制过程中的错误,从而导致各种类型的 DNA 畸变。然而,当核蛋白检测到任何损伤时,它们会通过将蛋白质复合物附着到病变部位来启动修复过程,然后靶标(如 p53)被信号转导子、介质和效应蛋白磷酸化,从而将细胞周期停滞在 G1/S、S 内或 G2/M 检查点 [2]。如果在有丝分裂之前得不到修复,突变或病变可能会传递给下一代,并启动凋亡信号级联。如果 DNA 损伤超过阈值,它会引发染色体畸变、恶性转化(包括永生化特征)和细胞不受控制的分裂的开始等变化,最终导致细胞死亡。DDR 和细胞周期检查点通路在恶性肿瘤中经常失调,导致诱变和基因组不稳定性增加,从而有助于癌症易感性和神经退行性等疾病的发展。然而,已经发现了各种基于其来源、起源和性质导致 DNA 损伤的 DNA 损伤剂,需要进行修复,下面将详细讨论(图 1 和补充表 1A-1C)。
摘要复制检查点对于精确的DNA复制和修复以及当细胞受到基因毒性应激挑战时的基因组完整性至关重要。几项研究定义了蛋白质的补充,这些蛋白质在化学诱导的DNA复制应激使用甲基甲基磺酸盐(MMS)或羟基脲(HU)(HU)(HU)中,改变了酿酒酵母的酿酒酵母中的亚细胞位置。如何调节这些蛋白质运动仍然在很大程度上没有探索。我们发现,基本检查点激酶MEC1和RAD53负责调节MMS诱导的复制应力期间159种蛋白质的亚细胞定位。出乎意料的是,RAD53 52蛋白的定位调节独立于其已知的激酶激活剂MEC1,在某些情况下,独立于Tel1或介体蛋白质RAD9和MRC1。我们证明了缺乏MEC1和TEL1的细胞中MMS暴露后Rad53是磷酸化的,并且有效。Rad53激活的这种非规范模式部分取决于重新级信号转录因子RTG3,这也促进了适当的DNA复制动力学。我们得出的结论是,RAD53蛋白激酶激活有生物学上重要的模式,它们会响应复制应力,并与MEC1和TEL1平行运行。
摘要:环境和职业暴露于六价铬、镍和镉等重金属是全球主要的健康问题。一些重金属是已证实的人类致癌物。DNA损伤、基因表达失调和异常的癌症相关信号传导等多种机制已被证明会导致金属诱发的致癌作用。然而,重金属诱发致癌和血管生成的分子机制仍不完全清楚。近年来,越来越多的研究表明,除了基因毒性和基因突变外,表观遗传机制在金属诱发的癌症中起着至关重要的作用。表观遗传学是指在不改变DNA序列的情况下对基因组进行的可逆性修饰;表观遗传修饰通常涉及DNA甲基化、组蛋白修饰、染色质重塑和非编码RNA。表观遗传调控对于维持正常的基因表达模式至关重要;表观遗传修饰的破坏可能导致细胞功能改变,甚至恶性转化。因此,异常的表观遗传修饰广泛参与金属诱导的癌症形成、发展和血管生成。值得注意的是,表观遗传机制在重金属诱导的致癌作用和血管生成中的作用仍不清楚,迫切需要进一步研究。在这篇综述中,我们重点介绍了目前在理解表观遗传机制在重金属诱导的致癌作用、癌症进展和血管生成中的作用方面的进展。
摘要:髓母细胞瘤是一种儿童脑恶性肿瘤,由四个转录亚型组成。结构和数值非整倍性在所有亚型中都很常见,尽管它们在第 3 组和第 4 组髓母细胞瘤以及 SHH 髓母细胞瘤亚型 SHH α 中尤为明显。这表明染色体不稳定性 (CIN),即导致非整倍性的过程,是髓母细胞瘤病理生理学中的重要因素。然而,尚不清楚髓母细胞瘤中是否存在持续的 CIN,或者 CIN 是否会影响发育中的小脑并促进肿瘤形成。为了研究这一点,我们对单个髓母细胞瘤细胞进行了核型分析,并证明了存在具有独特拷贝数变异的不同肿瘤细胞克隆,这表明存在持续的 CIN。我们还发现,在 SHH 髓母细胞瘤和推测的肿瘤细胞谱系的高度增殖区中,与 DNA 复制、修复和有丝分裂相关的过程丰富,后者也对基因毒性应激敏感。然而,当使用转基因小鼠模型用诱导 CIN 的遗传病变挑战这些肿瘤细胞源时,我们没有发现小脑中存在大染色体畸变或髓母细胞瘤形成的证据。因此,我们得出结论,如果没有特定基因突变的背景,CIN 在体内发育中的小脑中是不可接受的,因此,CIN 本身不足以引发髓母细胞瘤。