背景:Deguelin(DGL)是一种天然类黄酮,据报道在乳腺癌(BC)中表现出抗肿瘤作用。PEG-PCL(聚乙烯甘氨酸聚二苯乙酮),作为聚合物胶束具有生物降解性和生物相容性。这项研究的目的是研究纳米关节递送系统,PEG-PCL是否可以改善DGL抑制BC细胞增殖的生物利用度。方法:PEG-PCL聚合物首先是通过开环聚合物制备的,DGL和PACLITAXEL(PTX)负载的PEG- PCL纳米微粒是通过膜分散法制定的。通过核磁共振和傅立叶变换红外光谱(FTIR)光谱分析了PEG-PCL的组成和分子量。分别通过动态光散射,透射电子显微镜和溶血测定法评估了胶束的粒径,表面电位和溶血活性。然后用EDU染色,CCK-8,TUNEL染色和流式细胞仪测试了MDA-MB-231和MDA-MB-468细胞的增殖和凋亡。caspase 3表达也通过蛋白质印迹评估。结果:我们的结果首先表明PEG 2000 -PCL 2000已成功合成。DGL和PTX负载的PEG-PCL纳米微粒的形状为圆形,粒径为35.78±0.35 nm,表面电势为2.84±0.27 mV。胶束具有最小的溶血活性。此外,我们证明了DGL和PTX荷载PEG-PCL纳米细胞可以抑制BC细胞中的增殖并诱导凋亡。这为开发新的治疗策略提供了潜力。这项研究中构建的DGL和PTX负载的PEG-PCL纳米微粒具有显着的抑制作用,对BC细胞中的凋亡作用显着,并且在凋亡中具有显着的促销作用。结论:这项研究提出,PEG-PCL形成的纳米丝可以增强紫杉醇针对乳腺癌细胞的细胞毒性,同时,Deguelin的负载可能会进一步抑制细胞增殖。
过氧化物酶体增殖物激活的受体伽马共振剂1(PGC-1)家族(PGC-1)由三个涵盖PGC-1α,PGC-1β和PGC-1相关的共同激活剂(PRC)组成的三个成员比四分之一以前。PGC-1是许多重要细胞事件的必不可少的协调员,包括线粒体功能,氧化应激,内质网稳态和炎症。积累的证据表明,PGC-1与许多疾病有关,例如癌症,心脏疾病和心血管疾病,神经系统疾病,肾脏疾病,运动系统疾病和代谢性疾病。检查PGC-1S的上游调节剂和共激活伙伴,并确定由PGC-1的下游效应子调节的关键生物事件,这有助于呈现PGC-1S的精细网络。此外,讨论PGC-1与疾病之间的相关性以及总结针对PGC-1S的治疗有助于制定个性化和精确的干预方法。在这篇综述中,我们总结了有关PGC-1家族以及分子监管网络的基础知识,讨论了PGC-1在人类疾病中的生理病理学作用,回顾PGC-1S的应用PGC-1,包括PGC-1S的诊断和预后价值以及PGC-1S的预后和几种治疗方法以及在临床前研究中的几种疗法以及对未来的一些例子和未来的研究。本综述介绍了将PGC-1靶向疾病治疗的巨大潜力,并希望促进PGC-1作为新的治疗靶标的促进。
摘要。免疫力下降会使身体容易患病。由于使用药物(例如化疗药物)会产生许多副作用,因此许多人使用天然成分作为补充剂。淋巴细胞增殖是细胞分裂或增殖以增强免疫系统。本研究旨在确定螺旋藻 70% 乙醇提取物的总酚含量,并分析该提取物增加淋巴细胞增殖活性的潜力。总酚水平的测量采用 Folin-Ciocalteu 法。淋巴细胞增殖活性的测定采用 MTT 法。本研究中的 S. platensis 70% 乙醇提取物的总酚含量为 2.4957±0.0597 GAE mg/g。S. platensis 70% 乙醇提取物增加了淋巴细胞增殖活性。当浓度为 20 ppm 时,活力结果最佳,为 124.89±1.84%。
背景:了解胰腺腺癌 (PAAD) 发展的分子机制对于治疗这种疾病至关重要,因为目前的预后和治疗选择都令人非常沮丧。目的:本研究旨在研究己糖激酶结构域 1 (HKDC1) 在 PAAD 进展中的作用。方法:本研究利用生物信息学技术评估 HKDC1 的表达与临床特征之间的关系。通过体外实验研究 HKDC1 在 PAAD 中的分子机制和生物学功能。结果:本研究的结果表明,HKDC1 在各种类型的人类癌症中表达增加,并且 PAAD 中 HKDC1 表达升高与不良预后之间存在显著相关性。根据单变量和多变量 Cox 回归分析的结果,HKDC1 可以作为诊断患有 PAAD 的个体的独立预后指标。经过计算,我们发现HKDC1高表达组表现出较低的免疫学评分和较高的ESTIMATE评分,这表明免疫浸润评分存在差异。为了验证HKDC1在PAAD细胞系中的表达,我们通过qPCR和蛋白印迹分析了PAAD细胞系。还通过蛋白质印迹检测了人PAAD组织中HKDC1的表达。此外,我们通过菌落形成、5-乙炔基-2′-脱氧尿苷(EdU)、transwell和划痕愈合试验等实验探索了HKDC1在PAAD中的作用。在我们的研究中,我们发现在PAAD细胞类型中HKDC1表达的中断导致细胞生长速度降低并抑制细胞运动和侵袭。结论:总之,我们的研究结果表明HKDC1对PAAD的肿瘤微环境(TME)有显著影响,可能成为PAAD治疗的一个有希望的靶点,为PAAD的管理提供了新的视角。
心肌梗塞会导致心肌细胞丧失,并且出生后耗尽的心肌细胞增殖能力会影响心脏修复过程,最终导致心力衰竭。这项研究旨在研究聚(ADP-核糖)聚合酶1(PARP1)在心肌细胞增殖和心脏再生中的作用。我们的发现表明,PARP1敲除心肌细胞增殖,心脏功能和疤痕形成受损,而PARP1过表达改善了根尖切除术的小鼠的心脏再生。机械上,我们发现PARP1与热(ADP-核糖基)ates相互作用,热休克蛋白90 Alpha家族B成员1(HSP90AB1)与HSP90AB1和细胞分裂周期37(CDC37)(CDC37)和细胞周期酶活性之间的结合增加,因此激活了心脏模拟细胞细胞细胞周期。我们的结果表明,PARP1通过HSP90AB1的聚(ADP-核糖基)促进心脏再生和心肌细胞增殖,从而激活心肌细胞细胞周期,这表明PARP1可能是治疗心脏损伤的潜在治疗靶标。
CC 趋化因子配体 5 (CCL5) 是 CC 基序趋化因子家族的成员,该家族还包括巨噬细胞炎症蛋白 1 α (MIP-1 α ) 和巨噬细胞炎症蛋白 1 β (MIP-1 β ) (10-12)。CCL5 具有高亲和力,主要与其受体 CC 趋化因子受体 5 型 (CCR5) 以及 CCR1、CCR3、CCR4、CD44 和 GPR75 (13-15) 结合。CCL5 还通过激活核因子 κ -轻链增强子 (NF- κ B) 参与 B 细胞增殖 (16)。该蛋白在 T 淋巴细胞、巨噬细胞、血小板、滑膜成纤维细胞、小管上皮细胞和肿瘤细胞中表达 (17)。根据最近的研究,CCL5通过增强肿瘤转移(18)和重塑细胞外基质来促进肿瘤进展,从而支持肿瘤干细胞扩增(19),导致肿瘤细胞产生耐药性(20),降低DNA损伤因子的细胞毒性,减轻细胞代谢重编程(21),增加血管生成,动员免疫细胞(22),诱导巨噬细胞极化以抑制免疫反应(23)。然而,CCL5在BC中的潜在机制仍不清楚。
摘要:由于人为影响,有害的藻类和蓝细菌花朵在淡水系统中的频率和强度增加,例如在流域中的养分负荷以及天然水道的工程变化。有多种物理因素影响淡水系统中的条件,这有助于有害藻类和产生毒素的蓝细菌的最佳栖息地。越来越多的研究表明,气候变化应激源还会影响水体状况,这些条件有利于有害的藻类和蓝细菌,而不是其他浮游植物。这些生物的过度生长或“开花”增加了人类,伴侣动物,牲畜和野生动植物接触毒素的机会。随着水的温暖和降水模式随着时间的流逝而变化,预计暴露于这些花朵会增加。因此,重要的是,各州和部落制定监控和报告策略以及协调政府政策,以保护其管辖范围内的公民和生态系统。目前,为监测和报告有害藻类和蓝细菌开花所采取的政策和方法在各州之间差异很大,如果有任何部落有针对有害藻类开花的特定政策,则尚不确定。本文综合了对美国内陆淡水系统中藻类开花的研究。本综述研究了气候变化如何促进开花频率或严重程度的趋势,并概述了各州和部落可能用来监测,报告和响应有害藻类和蓝细菌的方法。
作者要感谢所有为本文做出贡献的人。,他们要对韩国基金会表示感谢,以提供使该论文成为可能的财政支持。They would also like to thank those who shared their expertise with the authors and which informed the analysis presented here, including: Aaron Arnold, Ian Bolton, Vann Van Diepen, John Druce, Siegfried Hecker, Alastair Morgan, Ankit Panda, John Park, Ramon Pacheco Pardo, Eric Penton-Voak, Maiko Takeuchi and a number of others who wish to remain anonymous.作者还感谢雅各布·伯恩(Jacob Byrne),他们帮助汇总了本文的一些数据,以及论文的同行审稿人,以及Matthew Harries,Malcolm Chalmers,Malcolm Chalmers,Mar Casas Cachinero和Rusi Publications Team,以支持他们的支持和有价值的反馈,并有价值。最终论文代表作者的观点。
胶质母细胞瘤(GBM)是一种恶性和侵略性脑肿瘤,由于结构和细胞态在结构和细胞状态下,由于内部和肿瘤间异质性而难以治疗。GBM肿瘤的一个特征是围绕坏死核的缺氧利基存在。传统的体外模型(如单层和肿瘤培养物)衍生自患者样品的培养物并未概括这些特征,这可能会导致评估新的治疗策略的困难。将GBM细胞培养为类器官,可能会提供更好的方法来保留父肿瘤的表型,这是由于3D器官结构内存在明显的低氧和非催眠区域。在这里,我们提出了一种基于Hubert等人发表的方案,使用Neurocult™NS-A增殖介质从肿瘤培养物中产生GBM器官的方案。(2016)。1
摘要目的:这项研究的目的是探索punicalagin的抗癌作用,Punicalagin是一种从Punica Granatum L.分离出的丰富的生物活性单宁化合物,在三种结肠癌细胞系上,即HCT 116,HT-29和LOVO。研究设计:在不同时期内用不同浓度的Punicalagin处理正常和结肠癌细胞。数据收集和分析:用CCK-8测定法测量细胞活力。使用膜联蛋白V和细胞死亡试剂盒和细胞入侵分析试剂盒分析了程序性细胞死亡和侵袭。通过蛋白质印迹测量了活性caspase-3,MMP-2,MMP-9,蜗牛和slug的表达。结果:细胞活力分析的结果表明,punicalagin对结肠癌细胞是细胞毒性的,但这不是以剂量和时间依赖性方式对正常细胞的细胞。此外,Punicalagin诱导结肠癌细胞的凋亡(如早期和晚期凋亡中结直肠癌细胞的累积百分比所示)。发现caspase-3治疗后caspase-3活性增加。Western印迹结果还表明,Punicalagin增加了激活的caspase-3的表现。相反,Punicalagin抑制了结肠癌细胞的侵袭。 此外,用Punicalagin治疗结肠癌细胞抑制了MMP-2,MMP-9,蜗牛和SLUG的表达。 结论:这些结果表明,caspase-3的激活以及MMP-2,MMP-9,Snail和Slug的抑制参与了Punicalagin对结肠癌细胞的影响。相反,Punicalagin抑制了结肠癌细胞的侵袭。此外,用Punicalagin治疗结肠癌细胞抑制了MMP-2,MMP-9,蜗牛和SLUG的表达。结论:这些结果表明,caspase-3的激活以及MMP-2,MMP-9,Snail和Slug的抑制参与了Punicalagin对结肠癌细胞的影响。
