Hatchard等。 将这些模型组合在一起,以模拟在过热条件下的完整细胞。 [9]该领域的新出版物[10-14]通常是指这些模型,并将其扩展以涵盖更广泛的应用程序。 这项工作的目的是为由于热失控而对蝙蝠的安全风险进行快速评估,该风险可以应用于高度灵活的电池生产,以用于各种类型,尺寸和形状的细胞。 [15]因此,在这项工作中开发了用于锂离子电池安全性评估的数值模型。 这项工作中提出的化学模型可以仔细观察热失控期间的分解反应。 这允许根据电池电池组成评估生成的热量和气体,这是有用的尺寸,例如安全通风孔和热屏障。 开发的模型侧重于热滥用条件下的完整细胞模拟。 因此,化学模型与热模拟相结合,以获得温度曲线并从模拟结果中释放总热量。 进行验证,建造了用于热滥用电池的测试钻机。 袋细胞通过以恒定的速度加热来将它们带到热失控中。 为了验证模拟框架,分析了热失控过程和相应气体释放期间温度预纤维的测量。Hatchard等。将这些模型组合在一起,以模拟在过热条件下的完整细胞。[9]该领域的新出版物[10-14]通常是指这些模型,并将其扩展以涵盖更广泛的应用程序。这项工作的目的是为由于热失控而对蝙蝠的安全风险进行快速评估,该风险可以应用于高度灵活的电池生产,以用于各种类型,尺寸和形状的细胞。[15]因此,在这项工作中开发了用于锂离子电池安全性评估的数值模型。这项工作中提出的化学模型可以仔细观察热失控期间的分解反应。这允许根据电池电池组成评估生成的热量和气体,这是有用的尺寸,例如安全通风孔和热屏障。开发的模型侧重于热滥用条件下的完整细胞模拟。因此,化学模型与热模拟相结合,以获得温度曲线并从模拟结果中释放总热量。进行验证,建造了用于热滥用电池的测试钻机。袋细胞通过以恒定的速度加热来将它们带到热失控中。为了验证模拟框架,分析了热失控过程和相应气体释放期间温度预纤维的测量。
图1。图像显示了由Northvolt为Scania生产的棱柱形电池。[5] ....................................................................................................................................................................................................................................................................................................................................................................................... 从电池电池到电池系统的最终产品的组件的示意图表示。 [17] ............................................................................................................................................ 14 Figure 3. 最常见的电池单元类型的示意图。 [25] .......................................................................................................................................................... 16 Figure 4. 棱柱电池电池模块的图。 [23] .................................................................... 18 Figure 5. 带有标记组件的电池组的示意图。 [38] ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... SAE International描述的双阶段通风孔功能的图。 [39] ........ 20图7。 (a)在温度与时间图中的热失控事件之前的通风场景的图形表示。 (b)在通风和热失控过程中产生的气体的图形表示与电池一起可以分别以物质温度和时间图温度温度。 [42] ............................................................................................................... 22 Figure 8. [8] ............................................................................................................................................................................................................................................................................................................................................................ 示意性表示在热失控期间弹出颗粒的方式。[5] .......................................................................................................................................................................................................................................................................................................................................................................................从电池电池到电池系统的最终产品的组件的示意图表示。[17] ............................................................................................................................................ 14 Figure 3.最常见的电池单元类型的示意图。[25] .......................................................................................................................................................... 16 Figure 4.棱柱电池电池模块的图。[23] .................................................................... 18 Figure 5.带有标记组件的电池组的示意图。[38] ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... SAE International描述的双阶段通风孔功能的图。 [39] ........ 20图7。 (a)在温度与时间图中的热失控事件之前的通风场景的图形表示。 (b)在通风和热失控过程中产生的气体的图形表示与电池一起可以分别以物质温度和时间图温度温度。 [42] ............................................................................................................... 22 Figure 8. [8] ............................................................................................................................................................................................................................................................................................................................................................ 示意性表示在热失控期间弹出颗粒的方式。[38] ...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................SAE International描述的双阶段通风孔功能的图。[39] ........ 20图7。(a)在温度与时间图中的热失控事件之前的通风场景的图形表示。(b)在通风和热失控过程中产生的气体的图形表示与电池一起可以分别以物质温度和时间图温度温度。[42] ............................................................................................................... 22 Figure 8.[8] ............................................................................................................................................................................................................................................................................................................................................................ 示意性表示在热失控期间弹出颗粒的方式。[8] ............................................................................................................................................................................................................................................................................................................................................................示意性表示在热失控期间弹出颗粒的方式。(a)ni,co和Mn的热失控粒子的质量百分比和元素组成的图形表示,以及(b)al,cu,f,p,p,以及其他元素。[74] .......................................................................................................................................................... 27 Figure 10.tr中包括粒子射血的阶段的示意图。[74] ......... 28图11。深度过滤器中主要过滤机制的示意图。[79] ..................................................................................................................................................................................................................................从棱柱形液体上的热失控测试中收集的颗粒的尺寸分布,其中a)显示了整个样品的尺寸分布,b)显示了a中第一个峰的尺寸分布。[74] ........................................................................................................................................ 33 Figure 13.带有孔的钢板的示意性重新陈述。............................................................. 37 Figure 14. a) Sketch of test set-up of singular cell and filter material.b) Image of test set-up of singular cell, filter material, and temperature sensors.......................................................................... 37 Figure 15.在测试期间拍摄的图像显示过滤器暴露于火焰的类型。由于机密性目的,未包含在图像中的单元。 ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... TR测试后过滤器A的图像。 TR测试后滤波器C的图像。未包含在图像中的单元。.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................TR测试后过滤器A的图像。TR测试后滤波器C的图像。.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................TR测试后滤波器B的图像(试验1).........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................Image of Filter B (Trial 2) after the TR test............................................................................. 41 Figure 19.......................................................................................... 41 Figure 20.所有过滤器的图像(a,b(试验1),b(试验2),c)在TR测试进行比较之后................................................................................................................................. 42图21。SEM images of Filter B (Trial 1) after the TR test ................................................................... 43 Figure 22.TR测试后,从过滤器B的SEM图像(试验1)中进行了。 .................................................. 43 Figure 23. SEM images of Filter B (Trial 2) after the TR test ................................................................... 44 Figure 24. TR测试后,来自滤波器B(试验2)的SEM图像的。 ......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... SEM images of Filter C after the TR test ................................................................................ 45从过滤器B的SEM图像(试验1)中进行了。.................................................. 43 Figure 23.SEM images of Filter B (Trial 2) after the TR test ................................................................... 44 Figure 24.。.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................SEM images of Filter C after the TR test ................................................................................ 45
具有高镍含量的NCM电池的高能密度是替换化石燃料和促进清洁能源开发的关键优势,同时也是电池严重安全危害的根本原因。一级和次级胺可以导致公共碳酸盐电解质的开环聚合,从而导致阴极和阳极之间的隔离层,并改善电池的热安全性。在这项工作中,根据胺和电池组件之间的化学反应,在材料水平和细胞水平上都考虑了电池的安全性。在材料水平上,通过差分扫描量热法测试了胺添加剂对锂离子电池不同组件的热稳定性的影响。在细胞水平上,通过使用加速速率量热计提取热失控(TR)特性温度,测试了带有和没有添加剂的整个电池的安全性。胺的添加导致电池组件之间的某些化学反应的早期发作,以及总热量释放的显着降低和最大温度上升速率的降低,从而有效地抑制了TR。
锂离子电池由于可能发生失控传播而容易产生危害。在电池产品开发和随后的设计验证和安全认证的安全性测试中,热失失的发作由各种测试方法(例如指甲渗透,热坡道或外部短路)触发。这种故障引发方法会影响热量贡献的量和气体世代的组成。本研究比较了两种这样的触发方法,即外部加热和使用热激活的内部短路装置(ISCD)。在18650年的单细胞水平以及多个细胞配置水平下,在18650年的圆柱细胞中,在实验中研究了触发方法对总热量产生的影响。观察到失败的严重程度对于在单细胞水平下具有ISCD的细胞的严重程度较差,而在多个细胞配置水平上观察到了相反的结果。进行了初步的数值分析,以更好地了解相对于热失控的触发方法和传热条件的电池安全性能。©2024作者。由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。[doi:10.1149/1945-7111/ad3aae]
摘要 本文探讨了飞行模拟器的保真度要求,以改进训练并解决与旋翼机飞行中失控 (LOC-I) 相关的问题。为了说明背景,本文介绍了旋翼机事故统计趋势。数据显示,尽管最近采取了安全举措,但 LOC-I 旋翼机事故已被确定为事故率的一个重要且不断增长的因素。20 世纪 90 年代末,固定翼商用飞机界面临着与失控预防和恢复相关的类似情况,并通过协调的国际努力,制定了有针对性的培训计划以降低事故率。本文介绍了从固定翼计划中吸取的经验教训,以强调如何需要改进旋翼机建模和仿真工具,通过更高质量的基于模拟器的培训计划来减少旋翼机事故。本文回顾了相关的飞行模拟器认证标准,重点关注飞行模型保真度和前庭运动提示要求。旋翼机建模和运动提示研究的结果强调了相关的保真度问题,旨在确定进一步活动的领域,以提高用于 LOC-I 预防训练的模拟器标准的保真度。
日益增加的锂离子电池需要进一步的安全测试和评估。最重要的是要理解不同的测试条件的影响,尤其是用于验证计算机模型。文献中有大量来自热失控测试的数据,但很少有来自大型测试系列的数据。评估不同测试条件的影响的缺失系统方法意味着在比较测试结果时的不确定性。此外,细胞发育中的快速速度(包括对较大细胞的使用越来越多)需要验证先前发表的结果。这项工作介绍了来自37个测试的热失控数据,对一种大格式棱镜锂离子细胞(157 AH)。测试是在封闭压力容器中进行的,该封闭压力容器以及惰性气氛以及排气收集器引擎盖下方的开放设置。此外,采用了六种不同的热失控触发方法以及四种不同的电荷状态。重点放在产生的气体上,这是安全评估的关键方面。将结果与文献数据进行了比较,并提出了一种新的修改方法来计算封闭压力容器中的特征发泄速率。可以得出结论,触发方法会影响电池的气体产量,质量损失和最高温度,并影响其电荷状态。大细胞格式可能会影响特定的总气体产生并增强不同触发方法的影响,但对其他评估参数的影响很小。由于测试设置的不同,在测试结果中没有明显差异,除了由于环境大气中释放的气体的潜在燃烧而导致的差异。
在六型21700锂离子细胞组成的小模块上进行了六个热失去传播测试,在六边形构型中,相邻细胞之间的间距为3 mm。使用直径为8 mm的指甲穿过细胞的正末端,将一个模块中心的一个单元触发到热失控中。在一半的测试中,使用35 mm的穿透深度在触发细胞中启动侧壁破裂。对于另一半测试,在触发细胞中未使用10 mM穿透深度在触发细胞中启动侧壁破裂。在触发细胞经历侧壁破裂的所有测试中,模块中其余六个细胞都有热失去的传播。在所有触发细胞没有侧壁破裂的测试中,模块中的任何其他细胞都没有热失去繁殖。这些结果是通过相对于名义衰竭的侧壁破裂失败的方向性和热传递的幅度来解释的。这些结果强调了当电池模块中发生侧壁破裂故障并强调方法减轻电池系统故障的重要性时,热失去传播的倾向增加了。
自上个十年以来,飞机失控或失控已被确定为可能导致商业航空运输运营中致命事故的主要风险因素之一,预防飞机失控已成为欧洲和全球的战略重点。这包括新的培训要求,以便更好地让飞行员为飞机失控和失控的不利情况做好准备。根据委员会条例 (EU) 2015/445 ,现有的商业飞行员培训要求已更新,将失控预防和恢复训练 (UPRT) 列为飞行员理论知识的强制性组成部分。需要进一步详细的培训要素和培训目标,以提高飞行员预防和恢复可能导致失控并最终导致致命事故的飞机失控的能力。UPRT 需要融入专业飞行员职业生涯的各个阶段,并应反映在个人飞行员执照中规定的特权中。应确保专业飞行员在防止和恢复失控方面具有良好发展和维持的能力。UPRT 应成为多机组飞行员执照 (MPL) 培训课程和飞机航线运输飞行员综合培训课程 (ATP(A)) 和飞机商业飞行员执照 (CPL(A)) 培训课程的必修部分,以及在多人操作中运行的单人飞机、单人非高性能综合飞机、高性能综合飞机和多人飞机等级的等级和类型等级。为了让飞行员发展先进的防止和恢复失控能力,相关培训课程应包括飞机上的相关空中练习。本文件旨在概述监管框架、适用的截止日期和应遵循的程序。
适用性: 机场:无 空中交通:无 空域:无 适航性:无 飞行操作:无 培训机构 ATO/FSTD 运营商 简介 HCAA 关于实施 UPRT(失控预防和恢复训练)以供 ATO(批准的培训机构)指导和/或意识使用的材料 0.1。简介:自上个十年以来,飞机失控或失控已被确定为可能导致商业航空运输运营致命事故的主要风险因素之一,并且预防飞机失控已成为欧洲和全球的战略重点。这包括新的培训要求,以便飞行员更好地应对飞机失控和失控的不利情况。根据委员会条例 (EU) 2015/445,现有的商业飞行员培训要求已更新,将失控预防和恢复训练 (UPRT) 作为飞行员理论知识的强制性组成部分。需要进一步制定详细的培训要素和培训目标,以提高飞行员预防和恢复飞机失控的能力,因为飞机失控可能导致失控,并最终导致致命事故。UPRT 需要融入专业飞行员职业生涯的各个阶段,并应体现在个人飞行员执照中规定的特权中。应确保专业飞行员在预防和恢复失控方面的能力得到充分发展和保持。UPRT 应成为多机组飞行员执照 (MPL) 培训课程和飞机航线运输飞行员综合培训课程 (ATP(A)) 和飞机商业飞行员执照 (CPL(A)) 培训课程的必修部分,以及在多人操作中运行的单人飞机、单人非高性能综合飞机、高性能综合飞机和多人飞机等级的等级和类型等级的必修部分。为了让飞行员掌握高级的失控预防和恢复能力,相关培训课程应包括飞机上的相关空中练习。本文件旨在概述监管框架、适用的期限和应遵循的程序。
适用性: 机场:无 空中交通:无 空域:无 适航性:无 飞行操作:无 培训机构 ATO/FSTD 运营商 简介 HCAA 关于实施 UPRT(失控预防和恢复训练)以供 ATO(批准的培训机构)指导和/或意识使用的材料 0.1。简介:自上个十年以来,飞机失控或失控已被确定为可能导致商业航空运输运营致命事故的主要风险因素之一,并且预防飞机失控已成为欧洲和全球的战略重点。这包括新的培训要求,以便飞行员更好地应对飞机失控和失控的不利情况。根据委员会条例 (EU) 2015/445,现有的商业飞行员培训要求已更新,将失控预防和恢复训练 (UPRT) 作为飞行员理论知识的强制性组成部分。需要进一步制定详细的培训要素和培训目标,以提高飞行员预防和恢复飞机失控的能力,因为飞机失控可能导致失控,并最终导致致命事故。UPRT 需要融入专业飞行员职业生涯的各个阶段,并应体现在个人飞行员执照中规定的特权中。应确保专业飞行员在预防和恢复失控方面的能力得到充分发展和保持。UPRT 应成为多机组飞行员执照 (MPL) 培训课程和飞机航线运输飞行员综合培训课程 (ATP(A)) 和飞机商业飞行员执照 (CPL(A)) 培训课程的必修部分,以及在多人操作中运行的单人飞机、单人非高性能综合飞机、高性能综合飞机和多人飞机等级的等级和类型等级的必修部分。为了让飞行员掌握高级的失控预防和恢复能力,相关培训课程应包括飞机上的相关空中练习。本文件旨在概述监管框架、适用的期限和应遵循的程序。