分子疗法使用基于核酸的治疗剂,成为对传统药物方法无反应的疾病条件的有前途的替代方法。反义寡核苷酸(ASO)和小干扰RNA(siRNA)是用于调节基因表达的两种众所周知的策略。靶向RNA的疗法可以精确地调节目标RNA的功能,具有最小的脱靶效应,并且可以基于序列数据进行合理设计。ASO和基于siRNA的药物具有在目标患者群体中使用的独特功能,或者可以作为患者抑制的N-ef-1治疗方法量身定制。反义疗法不仅可以用于治疗单基因疾病,而且还可以通过靶向涉及疾病发病机理的关键基因和分子途径来解决多基因和复杂疾病。在内分泌疾病的背景下,分子疗法在调节病原机制(例如缺陷胰岛素信号传导,β细胞功能障碍和激素失衡)方面特别有效。此外,siRNA和ASO具有下调过度活跃的信号传导途径,这些信号传导途径有助于复杂的,非发育性内分泌疾病,从而以分子起源解决这些疾病。ASOS还在全球范围内被研究为开发N-1-1疗法疗法的独特候选者。当寡核苷酸可以靶向患者的精确突变序列时,序列 - 特异性ASOS结合在N-OF-1方法中提供了非凡的精度。在这篇综述中,我们专注于内分泌系统的疾病,并讨论包括单基因β细胞糖尿病和肥胖症在内的糖尿病中潜在靶向RNA的治疗机会,包括综合征肥胖
遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA
柔道生物正在开创授予肾脏的寡核苷酸药物,为全身性和肾脏疾病的新遗传药物开辟了道路。凭借其罢工(选择性地将RNA靶向肾脏)平台,该公司正在使用专有方法来创建专为受体介导的特定肾细胞类型的更新而设计的配体RNA共轭药物,从而导致疾病调整靶基因的基因沉默。柔道生物的初始管道计划是使用Megalin受体家族的巨型杀手,将siRNA Therapeutics有选择地传递到肾脏的近端小管中,以使特定溶质载体蛋白(SLC)表达mRNA表达mRNA,从而抑制循环溶液链接的溶液链接的系统链接。位于马萨诸塞州剑桥市,柔道生物的团队和顾问包括寡核苷酸疗法和创新药物开发专家。有关更多信息,请访问www.judo.bio,然后在LinkedIn上关注我们。
1加州大学欧文分校生物医学工程系,CA 92617,美国2,2复杂生物体系中心,加利福尼亚大学,欧文分校,CA 92697,美国,3,CHAO合成生物学中心,Chao家族综合综合癌症中心发育和细胞生物学系,加利福尼亚州,美国4.26体质de l'ecole normale sup´erieure,ENS,Universit´e PSL,CNRS,Sorbonne Universit´e,Universit´e Paris cit´e,巴黎,法国,法国,5 Kusuma生物科学学院,印度技术学院,印度技术研究所,德里,德里,110016,印度110016,印度,6个小型Biosystems,facelent de deaada de de la d de la de de de de de de de de la sica de la sica, F´ısica,巴塞罗那大学,Carrer de Mart'i franqu`ies,1,08028西班牙巴塞罗那,7纳米西亚Institut de Nanotecnologia I nanotecnologia(IN2UB),巴塞罗那大学,佩尔纳尼亚州98028 pa Barcelona,98028 pa niia pa pan pa niia pa niia pa niia pa Institut de Biologie de l'´ Ecole Normale sup´erire(Ibens),CNRS,Insers,´Ecole Normale Sup´erieure,PSL研究生,F-75005,F-75005,法国,法国,10化学和生物化学系,加利福尼亚Los Angelles,Los Angelles,Los Angelles,Ca 90095法国1加州大学欧文分校生物医学工程系,CA 92617,美国2,2复杂生物体系中心,加利福尼亚大学,欧文分校,CA 92697,美国,3,CHAO合成生物学中心,Chao家族综合综合癌症中心发育和细胞生物学系,加利福尼亚州,美国4.26体质de l'ecole normale sup´erieure,ENS,Universit´e PSL,CNRS,Sorbonne Universit´e,Universit´e Paris cit´e,巴黎,法国,法国,5 Kusuma生物科学学院,印度技术学院,印度技术研究所,德里,德里,110016,印度110016,印度,6个小型Biosystems,facelent de deaada de de la d de la de de de de de de de de la sica de la sica, F´ısica,巴塞罗那大学,Carrer de Mart'i franqu`ies,1,08028西班牙巴塞罗那,7纳米西亚Institut de Nanotecnologia I nanotecnologia(IN2UB),巴塞罗那大学,佩尔纳尼亚州98028 pa Barcelona,98028 pa niia pa pan pa niia pa niia pa niia pa Institut de Biologie de l'´ Ecole Normale sup´erire(Ibens),CNRS,Insers,´Ecole Normale Sup´erieure,PSL研究生,F-75005,F-75005,法国,法国,10化学和生物化学系,加利福尼亚Los Angelles,Los Angelles,Los Angelles,Ca 90095法国
DNA的化学修饰是改善寡核苷酸的特性,特别是用于治疗和纳米技术的常见策略。存在的合成方法基本上依赖于磷光化学或三磷酸核苷的聚合,但在大小,可伸缩性和可持续性方面受到限制。在本文中,我们报告了一种使用模板依赖性DNA连接的短片片段,用于从头合成修饰的寡核苷酸。我们的方法基于化学修饰的Shortmer单粒子作为T3 DNA连接酶的底物的快速而缩放的可访问性。这种方法表明对化学修饰,灵活性和整体效率表现出很高的耐受性,从而允许访问具有不同长度(20→120个核苷酸)的广泛修饰的寡核苷酸。我们已将这种方法应用于临床相关的反义药物和含有多种模块化的超义药物的合成。此外,设计的化学酶方法在治疗和生物技术中具有巨大的应用潜力。
请注意:根据这些比例,可以扩大此反应(使用更多珠子)。4. 在 42°C 下孵育至少 1 小时。定期用手轻轻搅拌珠子。
遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA
强直性肌营养不良症,或 1 型强直性肌营养不良症 (DM1),是一种多系统性疾病,是成人最常见的肌营养不良症。它不仅影响肌肉,还影响许多器官,包括大脑。脑损伤包括认知缺陷、白天嗜睡以及视觉空间和记忆功能丧失。具有 CUG 重复的突变转录本的表达导致毒性 mRNA 功能的增强。反义寡核苷酸 (ASO) 策略治疗 DM1 脑缺陷的局限性在于 ASO 在全身给药后不会穿过血脑屏障,这表明应考虑其他给药方法。ASO 技术已成为开发多种人类疾病潜在新疗法的有力工具,其潜力已在最近的临床试验中得到证实。使用 IONIS 486178 ASO 靶向来自 DM1 患者人类诱导性多能干细胞的神经细胞中的 DMPK mRNA,可消除 CUG 扩增灶,实现 MBNL1/2 的核重新分布,并纠正异常剪接。在 DMSXL 小鼠脑室内注射 IONIS 486178 ASO 可使不同脑区中突变型 DMPK mRNA 的水平降低高达 70%。它还可逆转新生儿给药后的行为异常。本研究表明,IONIS 486178 ASO 靶向脑中的突变型 DMPK mRNA,并强烈支持基于鞘内注射 ASO 治疗 DM1 患者的可行性。
筛查罕见的遗传诊断,以保持反义寡核苷酸治疗的发展:一项回顾性队列研究David Cheerie 1,2 Marlen C. Lauffer 3 Logan Newton 1,2 Kimberly Amburgey 1,2,2,2,2,2,4 Danique Beijer 5,6 Bushra Haque 1 Brian Haque 1 Brian T. PAN 1,2 Miriam Reuter 9,10 Michael J. Szego 2,11,12 Anna Szuto 1,2,10 n = 1合作Annemieke aartsma-Rus 3,13 Michelle M. Axford 14,15 Ashish R. Deshwar 1,2,9,10,10,10,10,10 James J. Dowling 1,2,2,2,4,4,4,4,4,2 r.Marshall 14,1,25 Zhanda Zhanda Zhanda Zhanda Zhanda 14.25 Zhanda Zhanda Zhanda Zhanda Zhanda 14,1,25 ZHAL ZHARE 14,1,25 Matthis Synofzik 5,6 Timothy W. Yu 8,18 Gregory Costain 1,2,9,10,19 * 1遗传学和基因组生物学方面的计划中心,莱顿,荷兰荷兰4神经病学科医院,生病儿童医院,多伦多,安大略省,加拿大安大略省5个神经退行性疾病的转化基因组学科,赫尔蒂临床脑研究和神经病学中心和神经病学中心
摘要:反义寡核苷酸 (ASO) 是一种越来越常见的药物。这些小的核苷酸序列被设计成精确靶向其他寡核苷酸(通常是 RNA 物种),并经过修改以保护它们免受核酸酶降解。它们的特异性归因于它们的序列,因此可以靶向任何已知的 RNA 序列。这些分子非常灵活且适应性强,因为它们的序列和化学性质可以定制生产。根据所使用的化学性质,它们的活性可能会发生显著变化,并且它们对细胞功能和表型的影响可能会有很大差异。虽然有些会导致靶 RNA 衰变,但另一些只会与靶标结合并充当空间阻滞剂。它们令人难以置信的多功能性是操纵核酸功能的几个方面及其过程的关键,并改变特定细胞类型或组织的转录组谱。例如,它们可用于修改剪接或掩盖目标上的特定位点。整个设计(而不仅仅是序列)对于确保 ASO 针对其目标的特异性至关重要。因此,确保考虑到药物设计和测试的整个过程至关重要。ASO 的适应性是一个相当大的优势,在过去几十年中,它使多种新药获得批准。这反过来又对患者的生活产生了重大而积极的影响。鉴于 COVID-19 大流行带来的当前挑战,有必要找到新的治疗策略来补充全球正在使用的疫苗接种工作。ASO 可能是一种非常强大的工具,可用于靶向病毒 RNA 并提供治疗范例。ASO 作为抗病毒剂的有效性的证明由来已久,但目前尚无任何分子获得 FDA 批准。在这次健康危机期间,RNA 疫苗的出现和广泛使用可能为开发市场上首批抗病毒 ASO 提供了理想的机会。在这篇评论中,我们描述了 ASO 的故事、它们的化学不同特性以及它们的特性如何转化为研究和临床工具。