DNA/RNA 分析 30 多年的 DNA Sanger 测序经验使 Microsynth 成为欧洲领先的测序供应商之一。该公司在瑞士、德国、法国和奥地利建立了 Sanger 测序实验室,能够在这些国家提供 Sanger 测序服务,其特点是速度无与伦比,并且提供环保的取货服务。此外,它还通过其 Ecoli Nightseq ® 设立了另一项行业标准。这是一项改变游戏规则的全新服务,可以更快、更经济高效地对大肠杆菌的质粒进行测序。Microsynth 提供的高质量下一代测序服务涵盖了 Illumina 的全系列测序平台 - 包括小 RNA、总 RNA 和 DNA 在内的一套全面的测序文库 - 可对从病毒到人类的所有生物体以及质粒进行 DNA 和 RNA 测序
调节反义寡核苷酸(ASOS)为罕见的神经系统疾病提供治疗选择,包括患者特异性,个性化的ASOS,其中包括非常罕见的突变。受到米拉森(Milasen)的发展,1突变1药物(1m1m)和荷兰RNA治疗中心(DCRT)的启发,旨在发展特异性患者ASO,并分别治疗欧洲和荷兰的合格患者。将在指定的患者环境下提供治疗。我们的举措受益于欧洲药品局(EMA)在临床前校对研究,安全研究,复合和衡量治疗患者的福利和安全性方面的监管建议。我们在这里概述了这些相互作用中最重要的考虑因素,以及我们如何在欧洲境内制定和治疗合格患者的计划中实施此建议。
代替国际农业| Semmelweisstrasse 3 | 82152 planegg/steinkirchen |德国电话:+49 899 363 0 |传真:+49 89 899 363 11 |电子邮件:info@metabion.com | www.metabion.com
近年来,RNA 相关治疗的治疗潜力取得了巨大进步,特别是反义寡核苷酸 (ASO) 药物,导致 ASO 监管批准数量增加。在这项研究中,我们重点关注 SPL84,这是一种吸入式 ASO 药物,用于治疗肺部疾病囊性纤维化 (CF)。由于存在各种生物、物理、化学和结构障碍,肺部药物输送具有挑战性,尤其是在以细胞核为目标时。SPL84 在肺部的有效分布、细胞和细胞核的渗透以及稳定性是影响临床药物疗效的关键参数。在这项研究中,我们展示了 SPL84 在小鼠和猴子肺部的正确分布以及细胞和细胞核渗透。体内和体外研究证实了我们的吸入式 ASO 药物通过 CF 患者来源的粘液和肺溶酶体提取物的稳定性和流动性。我们的研究结果得到了有希望的临床前药理作用的支持,强调了 SPL84 作为治疗 CF 患者的有效药物的巨大潜力。此外,成功解决 SPL84 的肺部分布和特定细胞靶向问题为进一步开发 SpliSense 吸入式 ASO 药物治疗未得到满足的肺部疾病提供了巨大的机会。
反义寡核苷酸 (ASO) 是短的单链合成 RNA 或 DNA 分子,而双链 RNA 核苷酸序列称为小干扰 RNA (siRNA)。ASO 与互补核酸序列结合,影响靶核酸的相关功能。它们代表了一类新兴药物,通过革命性的作用机制,旨在直接调节致病基因及其变体,为传统的“蛋白质特异性”疗法提供替代工具。大多数 ASO 旨在治疗孤儿遗传疾病,在大多数情况下,这些疾病会严重致残,并且仍然缺乏适当的治疗方法。为了将 ASO 转化为临床成功,不断的技术进步有助于克服多种药理学、毒理学和配方限制。因此,最近已经实施了化学结构,并探索了新的生物共轭和纳米载体配方策略。这项工作的目的是提供反义技术的概述,并对美国食品药品监督管理局 (FDA) 和欧洲药品管理局 (EMA) 批准的寡核苷酸进行比较分析。
本指南包括针对合成或天然衍生的单链或双链 ONT 的建议,这些 ONT 具有天然或经过修饰的主链或核苷结构,可增加或减少蛋白质的表达和/或功能。所包括的寡核苷酸的例子有反义寡核苷酸、小干扰 RNA、microRNA、转移 RNA、诱饵和适体。免疫刺激性寡核苷酸(例如,通过 Toll 样受体起作用的 CpG 基序)和 CBER 监管产品(例如,DNA/RNA 疫苗、病毒递送的 ONT、信使 RNA 和用于基因编辑的 RNA)不包括在内。如果寡核苷酸本身属于本指南的范围,则包括与其他类型分子(例如,糖类、脂质、肽、抗体)结合的寡核苷酸。
反义寡核苷酸 (ASO) 已用于调节体内和体外精确 RNA 的表达超过 30 年 [1]。ASO 可通过两种机制发挥作用:激活 RNase H1 来切割 RNA 靶标,或从空间上阻断调节蛋白或核酸接近 RNA(图 1)。RNase H 类内切酶主要在细胞核中起作用,尽管研究表明 RNase H1 在细胞质中也有活性 [2–4]。对于 RNase H1 降解性 ASO,RNase H1 内切酶仅在 RNA 与 DNA(在这种情况下,DNA 残基是 ASO 的一部分)以异源双链形式杂交时才会特异性切割 RNA。一旦发生 RNA 分子切割,ASO 就会解离并多次循环利用以切割新的 RNA 分子 [5,6]。相比之下,立体阻断 ASO (SBO) 经过化学修饰,因此在与 RNA 靶标杂交时不会形成 RNase H1 的底物,通常是通过使用整个 ASO(DNA 除外)中的 2' 修饰 RNA 残基来实现的。相反,SBO 分子会紧密结合单个 RNA 分子,不会发生周转,从而阻碍其他生物分子在该位点进行功能性结合的能力 [ 7–11 ]。本文将重点介绍设计 RNase H1 介导的降解性 ASO 的策略。
遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA
罕见病影响着全球近 5 亿人,主要影响儿童,并且常常导致生活质量严重下降和治疗费用高昂。虽然人们在开发罕见病的有效治疗方法方面做出了重大贡献,但仍需要更快速的药物发现策略。治疗性反义寡核苷酸可以通过由碱基序列和化学修饰决定的各种机制以高特异性调节靶基因表达;并且在一些罕见神经系统疾病的临床试验中显示出疗效。因此,本综述将重点介绍反义寡核苷酸的应用,特别是剪接转换反义寡聚体作为罕见神经系统疾病的有希望的治疗方法,主要例子是杜氏肌营养不良症和脊髓性肌萎缩症。我们还将简要讨论开发罕见病反义疗法所面临的挑战和未来前景,包括靶点发现、反义化学修饰、治疗验证的动物模型和临床试验设计。
遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA