在当今的计算机技术中,降低功耗是一项日益艰巨的挑战。传统的计算架构受到所谓的冯·诺依曼瓶颈 (VNB) 的影响,即需要在内存和处理单元之间不断交换数据和指令,从而导致大量且似乎不可避免的功耗。即使是通常用于运行人工智能 (AI) 算法(例如深度神经网络 (DNN))的硬件也受到此限制的影响。为了满足对超低功耗、自主和智能系统日益增长的需求,必须改变范式。从这个角度来看,新兴的忆阻非易失性存储器被认为是引领这项技术向下一代硬件平台过渡的良好候选者,它使在同一位置存储和处理信息成为可能,从而绕过 VNB。为了评估当前公共可用设备的状态,本文对商用级封装的自导通道忆阻器进行了彻底研究,以评估其在内存计算框架中的性能。具体而言,确定了允许突触权重的模拟更新和稳定的二进制切换的操作条件以及相关问题。为此,设计并实现了基于 FPGA 控制平台的专用但原型的系统。然后,利用它充分表征创新智能 IMPLY(SIMPLY)逻辑内存(LiM)计算框架的功耗性能,该框架允许可靠地在内存中计算经典布尔运算。将这些结果投影到纳秒范围可以估算出这种计算范式的真正潜力。虽然本文没有进行研究,但所提出的平台也可用于测试基于忆阻器的 SNN 和二值化 DNN(即 BNN),它们可与 LiM 结合以提供异构灵活架构,这是无处不在的 AI 的长期目标。
使用瞬态热分析 (TTA) 研究不同 SAC + 焊料的热机械疲劳,并使用人工神经网络 (ANN) 进行预测。TTA 测量热阻抗,并允许检测焊料裂纹和材料界面的分层。使用七种不同焊料焊接到印刷电路板上的 LED 在被动空对空温度冲击测试中老化,每 50 次循环进行一次 TTA 测量,以热阻增加为故障标准。在测试条件下,SnAgCuSb 焊料比 SAC305 参考表现出最佳性能改进。除了通过累积故障曲线和威布尔图进行标准评估外,还研究了新的可靠性评估方法来评估单个 LED 焊点的可靠性。建立了一种混合方法来预测加速应力测试期间单个 LED 焊点的故障,该方法使用具有记忆的人工神经网络(特别是 LSTM)处理 TTA 数据,其中记忆允许充分利用测量历史。使用了两种 ANN 方法,即回归和分类。这两种方法都相当准确。从回归方法中获得的信息越多,需要使用问题要求的外部知识进行更多处理,而分类方法可以更直接地实施。结果证明了集成方法在评估焊点剩余使用寿命方面的优势。
JSC“RIC“TECHNOSPHERE”编辑地址:莫斯科,圣。 Krasnoproletarskaya,16,建筑 2 信件地址:125319,莫斯科,邮政信箱 91 电话:+7 (495) 234-0110 分机。 183 传真:+7 (495) 956-3346 电子邮件:journal@electronics.ru 互联网 http://www.nanoindustry.su http://elibrary.ru www.e.lanbook.ru
3D 技术中不同功能层之间的垂直电互连通常采用硅通孔 (TSV) 实现 [1]。根据应用,这些 TSV 的长度范围从 100 μm 到几 μm。直径通常也相应地缩小。这些 TSV 对于 3D 技术来说是必不可少的,可确保更短的电互连,从而实现更高的器件密度和信号速度。但它们也容易出现故障。 TSV 中存在多种潜在故障原因和影响 [2],例如空洞(电迁移或加工引起)、分层、未对准、与金属连接不良、TSV 之间连接短路或开路、衬里击穿、应力引起的影响等。在本文中,我们讨论了两种已知故障分析技术——磁场成像 (MFI) 和光诱导电容改变 (LICA) 的替代用途,以检测与衬里击穿 (BD) 引起的泄漏和连接 TSV 的金属开路相关的 TSV 故障。
微电子药丸由经过机械加工的生物相容性(无细胞毒性)、耐化学腐蚀的聚醚醚酮 (PEEK) 胶囊和 PCB 芯片载体组成,后者是传感器、ASIC、发射器和电池连接的通用平台。每个制造的传感器都通过引线键合连接到定制的芯片载体上,该载体由 10 针、0.5 间距聚酰亚胺带状连接器制成。传感器芯片通过单独的 FCP 插座连接到 PCB 的两侧,传感器芯片 1 面向顶面,传感器芯片 2 朝下。因此,芯片 2 上的氧气传感器必须通过焊接到电路板上的 3,200 nm 铜引线连接到顶面。发射器集成在 PCB 中,PCB 还包含电源轨、传感器连接点以及发射器和 ASIC 以及载体所在的胶囊的支撑槽。胶囊被加工成两个独立的螺丝装配隔间。PCB 芯片载体连接到胶囊的前部。传感器芯片通过接入端口暴露在周围环境中。
本公司的控股股东 无锡华微 指 无锡华润微电子有限公司 华润华晶 指 无锡华润华晶微电子有限公司 无锡华润上华 指 无锡华润上华科技有限公司 华润安盛 指 无锡华润安盛科技有限公司 华润微集成 指 华润微集成电路(无锡)有限公司 迪思微电子 指 无锡迪思微电子有限公司 华润芯功率 指 无锡华润芯功率半导体设计有限公司 华晶综服 指 无锡华晶综合服务有限公司 华微控股 指 华润微电子控股有限公司 华润赛美科 指 华润赛美科微电子(深圳)有限公司 重庆华微 指 华润微电子(重庆)有限公司 矽磐微电子 指 矽磐微电子(重庆)有限公司 杰群电子 指 杰群电子科技(东莞)有限公司 润科基金 指 润科(上海)股权投资基金合伙企业(有限合伙) 润安科技 指 华润润安科技(重庆)有限公司 润西微电子 指 润西微电子(重庆)有限公司 华微科技 指 华润微科技(深圳)有限公司 润新微电子 指 润新微电子(大连)有限公司 国务院 指 中华人民共和国国务院 发改委 指 中华人民共和国国家发展和改革委员会 国务院国资委 指 国务院国有资产监督管理委员会 科技部 指 中华人民共和国科学技术部 财政部 指 中华人民共和国财政部 工业和信息化部、工信部 指 中华人民共和国工业和信息化部 中国证监会 指 中国证券监督管理委员会 上交所 指 上海证券交易所 元、万元、亿元 指 人民币元、万元、亿元 本报告期、报告期 指 2022 年 1 月 1 日至 6 月 30 日
公司控股股东为 Anji Microelectronics Co. Ltd. ,无实际控制人。现场检查人
认识到提高效率和最大限度地减少国防部 ME 供应链中的漏洞的重要性,国防部副部长于 2021 年 1 月成立了国防微电子跨职能团队 (DMCFT)。DMCFT 的主要职责之一是制定国防部范围的 ME 战略,其中包括使用最佳商业设计、开发、运营、维持和现代化实践建立可持续美国生态系统的实施和过渡计划。国防部正处于关键时刻,必须利用国家对 ME 的利益和资金,制定统一的愿景和战略,以确保满足国家安全权益。本文件是 DMCFT 对整个国防部愿景的建议,旨在告知国防部高层领导和更广泛的社区。随着 DMCFT 收集数据并分析 ME 的当前状态以制定相应的实施和过渡计划,本愿景文件可能会进行完善或更新。