注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE-AC05-00OR22725,与美国能源部签订。美国政府保留,出版商在接受文章发表时,承认美国政府保留非独占、已付费、不可撤销的全球许可,可出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 (http://energy.gov/downloads/doe-public-access-plan) 向公众提供这些联邦资助研究的结果。
与汽油汽车 (GC) 相比,电动汽车更加环保、节能且经济。然而,当前电动汽车的一个突出缺点是电池从空电状态到充满电需要很长的等待时间,而给 GC 充满电只需几分钟。在此背景下,美国能源部提出了“极限快速充电” (XFC) [2],具体要求充电时间为 15 分钟(4C 速率),以确保电动汽车的大规模普及。到目前为止,使用石墨负极和碳酸亚乙酯 (EC) 基电解质的商用 LIBs 不可能在没有锂镀层的情况下实现 XFC,因为与 Li/Li + 相比,石墨的工作电位在高倍率下很容易降至 0 V。[3] 人们进行了无数的尝试致力于石墨的结构改性以提高倍率性能,例如降低曲折度 [4] 和增加孔隙率。 [5] 然而,由于电池能量密度不可避免地会降低,这些以高功率换取低能量密度的尝试并不适合实际应用。另一方面,加速本体电解质中的 Li + 传输过程似乎是实现高动力学的有效方法 [6],而不会牺牲能量密度。低粘度的脂肪族酯 [7] 被用作
巴黎,2021 年 7 月 23 日——在 NHOA 于本日发布的 Masterplan10x 和战略抱负以及 Free2Move eSolutions 董事会批准的背景下,NHOA 首席执行官兼 Free2Move eSolutions 执行主席 Carlalberto Guglielminotti 宣布了开发首个 100% 车辆到电网集成 (VGI) 的电动汽车快速充电网络的项目,该项目由可再生能源和能源存储实现(“Atlante 项目”)。Atlante 项目也恰逢欧盟委员会于 2021 年 7 月 14 日通过 Fit for 55 一揽子计划的背景下,该计划的目标包括从 2035 年起注册 100% 零排放汽车,并在主要高速公路上定期安装充电和加油站:每 60 公里进行一次电动汽车充电,每 150 公里进行一次加氢。
摘要 - 相对于快速充电站(FCS)系统,对重型卡车的电池交换站(BSS)的优势和缺点知之甚少。本研究评估了电动重型卡车的这两种充电机制,旨在比较系统的效率并确定每种选项的最佳设计。开发了一种模型来解决充电网络中BSS的计划和操作,将电池内电池视为各种服务的资产。我们评估绩效指标,包括运输效率和电池利用效率。我们的评估表明,与快速充电相比,BSS通过降低车辆的停机时间大大提高了运输效率,但可能需要更多的电池。BSS具有中型电池的BSS可提高运输效率在时间和人工方面。FCS依靠卡车需要更大的电池以补偿延长充电时间。要了解这两个指标之间的权衡,在不同的情况下进行了成本效益分析,涉及电池价格和人工成本的潜在变化。此外,BSS还显示了通过能源套利和网格辅助服务来减少大量CO 2排放的潜力。这些发现强调了将BS集成到未来的电动卡车充电网络并采用碳感知的操作框架的重要性。
印度以其新兴的技术领域而闻名,目睹了电子制造业的快速增长。该国已成为生产各种电子产品的全球枢纽,包括智能手机,消费电子产品和汽车组件。但是,为了维持和加速这一增长轨迹,必须解决具有彻底改变行业的关键方面:快速收费。随着对电子设备的需求不断上升,高效和快速充电的解决方案变得越来越重要。全球市场价值超过2万亿美元的电子产品,中国占该行业全球生产和商业的一半以上。买家正在努力使自己的供应链多样化和降低风险,因为中国的生活成本正在增加。这为印度提供了一个极大的机会,可以显着迈向它迫切需要产生的2亿个工作。印度是领导人的众多选择之一。
本文已接受发表并经过完整的同行评审,但尚未经过文字编辑、排版、分页和校对过程,这可能会导致此版本与记录版本之间存在差异。请引用本文 doi: 10.1002/adma.202201446 。
快速充电协议的设计对于改善锂电池的性能和寿命至关重要。众所周知,尽管缺乏对这些关系的定量理解,但在非常高的电流下始终执行的充电操作会对操作安全性和电池寿命产生负面影响。协议设计问题通常是作为基于模型的动态优化提出的,可以通过约束相关的电池状态来编码操作的安全性。但是,所有模型都受不确定性的影响,而不确定性又会传播到声明预测。在这种情况下,基于名义预测的协议可能无法满足操作约束。为了克服这个问题,这项工作提出了一种随机最佳控制方法,以有效地计算安全,快速充电协议,能够明确考虑影响电池模型的参数不确定性,并保证概率可靠的稳健约束满意度。给定对影响模型参数的不确定性的描述,利用线性化灵敏度分析以传播对电池状态的不确定性,并计算每次时刻的安全限制值。通过计算五个不同的方案,具有详细的多孔多孔电极理论的基于市售锂 - 铁磷酸锂磷酸锂电池的模型,在计算机中证明了该方法的有效性。
成立于1991年,与卢卡斯学院(Lucas College)和圣何塞州立大学(SJSU)合作的有组织的研究和培训部门Mineta Transportation Institute(MTI),通过提高所有人的安全,效率,可访问性以及我们国家运输系统的便利性来提高所有人的流动性。通过研究,教育,劳动力发展和技术转移,我们帮助创建了一个联系的世界。MTI领导了由美国运输部(California State University Consmentation Consortium),由美国运输部(CSSUTC)资助的,由美国运输部(CSUTC)资助了由加利福尼亚州的联邦法案1和极端的培训(CCE)培训(CSUTC)资助(CSUTC),由美国运输部(CSSUTC)通过1和极端的活动培训(CCE)(CSCE)(CSUTC)资助了美国运输部(CSUTC),由美国运输部(CSSUTC)和极端的培训(CCE)培训(CSCE)(CSCE),领导了美国运输部(CASUTC)资助的公平,高效和可持续运输(MCEEST)的内部收益联盟(MCEEST)(CSUTC)。MTI专注于三个主要职责:
摘要:确保效率和安全性在制定锂电池的充电策略时至关重要。本文介绍了一种新型方法,以优化圆柱形锂离子NMC 3AH细胞的快速充电,从而提高了它们的充电效率和热安全性。使用模型预测控制(MPC),本研究提出了一种成本函数,该成本函数估算了锂离子电池的热安全边界,强调了在不同温度下温度梯度与电荷状态(SOC)之间的关系。充电控制框架将等效电路模型(ECM)与最小电热方程相结合,以估算电池状态和温度。的优化结果表明,在环境温度下,最佳充电允许细胞的温度在安全的操作范围内自我调节,与典型的快速充电协议(高电流轮廓)相比,仅需要一分钟才能达到80%的SOC。通过数值模拟和来自NMC 3AH圆柱形细胞的实际实验数据验证表明,简单的方法在充电过程中遵守电池的电气和热限制。