科学素养(Montecalvo & Larkin,2018)。然而,普通民众支持国家太空计划,美国(Pew,2019)和中国(Hines,2022)等国家的研究表明就是如此。此外,研究发现,人们大大高估了公共部门在太空探索方面的支出(ESA,2018)。另一个重要方面是学生的参与意愿。研究表明,学生普遍对学习太空的可能性持积极态度(Bergstrom 等人,2016)。学生认为物理等太空学科对他们未来的职业生涯很有趣,也很有用(Reid & Skryabina,2002),空间科学应该在一个人的整体常识中占有更重要的地位(Ottavianelli & Good,2002)。尽管如此,太空探索也被认为是奢侈和不必要的。太空研究被认为很困难,只适合最优秀和最聪明的人(Bergstrom 等人,2016)。关于空间科学的另一个经常被提及的误解是该学科的狭隘观点。它主要与天文学、物理学或机械工程有关,而这一领域涉及更多学科,例如生物学、地质学、信息学、电信、医学、心理学、法律等。人们认为空间领域以男性为主,由智力超群的人占据,大多数人无法进入。这种看法可能会造成一种同质环境,只有特定类型的人才能代表这一领域。为了使空间更具包容性、可及性和社会相关性,有必要对这一主题进行进一步研究。在本文中,我们希望展示我们在大学生中进行的混合方法研究的结果。这项研究旨在确定人们对太空探索和参与太空的总体态度。我们还调查了性别差异。
,QWURGXFWLRQ口语技术的域范围从语音输入和输出系统到复杂的理解和生成系统,包括具有广泛差异的复杂性(例如自动命令机)和多语言系统(例如自动对话和翻译系统)的多模态系统。对此类系统的标准和评估方法的定义涉及高度特定的口语语料库和词典资源的规范和开发,以及测量和评估工具。在开始时,这些领域的标准是从以前在许多欧洲和国家项目中建立的口语社区中的共识得出的,它参考了美国和日本的重要举措。主要是SAM项目(集中在组件技术评估和语料库创建上),SQALE(用于大型词汇系统评估)以及日d和Sundial和Sunstar(用于多模式系统)过去和现在的项目在评估和资源领域具有重要的产量,包括ARS,Relator,Onomastica和SpeechDat,以及德国的Verbmobil等主要国家项目和研究计划。
GDM的全球患病率在5.8%至11.7%之间。6流行率的广泛差异可能是由GDM诊断标准的差异来解释的。6尽管90%的GDM病例将在分娩后正常化,但有些案件将持续存在,而妇女将发展糖尿病前期或DM。据报道,分娩后五年后约有50%的GDM患者被诊断为2型DM。7在斯里兰卡(Sri Lanka),一项纵向研究发现,与没有GDM相比,GDM女性在10年持续时间内患糖尿病的几率是10.6倍。8然而,生活方式干预措施有机会减慢这些女性中2型糖尿病的进展。9重要的是向具有GDM的女性提供准确,及时的信息,以了解其未来患糖尿病的风险。他们还应该接受根据需求量身定制的干预措施。确保有关积极生活方式修正案的行为的持续改变,应考虑几个要素,包括风险感知,信念和心理社会障碍。10除其他外,风险感知被确定为各种理论健康模型中健康行为的重要决定因素。11对患有未来糖尿病的高风险感知的女性更有动力进行筛查和生活方式改变。12关于发育糖尿病(RPS-DD)问卷的风险感知调查评估了一个人感知的患有这种疾病的风险的各个方面。13此工具由乐观偏见,个人控制,糖尿病风险因素知识,福利和障碍以及风险感知组成。最初用于预防糖尿病计划密歇根州糖尿病研究中心,14它在GDM母亲之间进行了随后的验证过程。13使用Cronbach的α的内部一致性非常出色(0.65至0.72)。RPS-DD问卷开发过程是彻底且多阶段的。但是,可以组织其他研究以评估验证性因素分析和评估其外部有效性。此外,马来语中没有发表的工具来衡量该人群中糖尿病的风险感知。这项研究旨在适应,翻译和
摘要:从表面上看,行为科学和物理学似乎是两个不同的研究领域。然而,对他们解决的问题进行了更仔细的研究表明,它们彼此唯一相关。以量子思维,认知和决策理论为例,这种独特的关系是本章的主题。调查当前的学术期刊论文和学术专着,我们提出了量子力学在人类感知,行为和决策现代研究中的作用的另一种愿景。为此,我们主要旨在回答“如何”问题,故意避免复杂的数学概念,但要开发一种技术简单的计算代码,读者可以修改以设计自己的量子启发的模型。我们还介绍了计算代码的应用并概述几个合理的方案的几个实践示例,其中量子模型基于提议的DO-Yourandself Model套件可以帮助了解个人和社会群体的行为之间的差异。
摘要 人类在感知方面表现出重力优势:我们能更精确地判断向下移动物体的速度,而不是向上移动物体的速度,这表明重力加速度是一种内在化的先验。然而,尚不清楚这种重力先验是完全基于感知线索,还是可以结合语义知识。先前的研究仅使用了已知服从重力的物体,可能混淆了语义和感知线索。在这里,我们通过要求参与者判断通常与重力(球)或逆重力(火箭)相干移动的物体的速度来解决这个问题。我们的结果显示,无论物体身份如何,下落刺激都具有感知优势,这表明重力先验是基于感知线索的。
机器人及时通过传感器数据构建持久,准确且可操作的模型的能力是自主操作的范围。在将世界表示为点云可能足以进行本地化时,避免障碍物需要更密集的场景表示形式。另一方面,更高级别的语义信息通常对于分解必要的步骤来完成一项复杂的任务,例如烹饪,自主是至关重要的。因此,迫在眉睫的问题是,手头机器人任务的合适场景表示是什么?这项调查提供了对关键方法和框架的全面回顾,这在机器人空间感知领域推动了进步,并特别关注了代表的历史演变和当前的趋势。通过将场景建模技术分类为三种主要类型(公式,公式和指标 - 语言流行),我们讨论了空间启示框架正在从构建世界的纯几何模型转变为更高级的数据结构的方式,这些模型包括更高级别的概念,例如对象实例和位置的概念。特别重点是实时同时定位和映射(SLAM)的方法,它们与深度学习的集成,以增强了鲁棒性和场景的理解,以及它们处理场景动态性的能力,作为当今驾驶Robotics研究的一些最热门的主题。我们在讨论方面的挑战和未来的研究方向的讨论中进行了结论,以建立适合长期自治的强大而可扩展的空间感知系统。
尽管最近的研究通过深度学习技术突破了极限,但从 3D 点云中进行物体检测仍然是一项具有挑战性的任务。由于严重的空间遮挡和点密度随到传感器距离的固有变化,同一物体在点云数据中的外观会有很大变化。因此,设计针对这种外观变化的鲁棒特征表示是 3D 物体检测方法的关键问题。在本文中,我们创新地提出了一种类似域自适应的方法来增强特征表示的鲁棒性。更具体地说,我们弥合了特征来自真实场景的感知域和特征从由富含详细信息的非遮挡点云组成的增强场景中提取的概念域之间的差距。这种领域自适应方法模仿了人脑在进行物体感知时的功能。大量实验表明,我们简单而有效的方法从根本上提高了 3D 点云物体检测的性能并取得了最先进的结果。
摘要 本研究的目的是研究电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对患有特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视觉感知的影响。本研究的调查是半实验研究,前测和后测采用单组,统计方法为混合方差分析。统计人群是德黑兰复活四所女孩 Maad 小学三年级、四年级、五年级、六年级的全部 216 名学生,其中 10 人通过随机抽样和可用抽样进行测量。为了收集信息,使用了(Susan pickering 工作记忆测试、Visconsin 卡片分类测试和 Frostig 测试)。结果表明,特定学习障碍(阅读、写作、数学)学生与正常学生在工作记忆和空间视知觉等方面存在差异,而电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视知觉有影响。 关键词:工作记忆 空间视知觉 学习障碍 电脑游戏 引言 特定学习障碍是指一组异质性障碍,其特征是在言语、阅读、写作、答题或数学技能的习得和使用上存在显著差异。学习障碍是一种在使用口头或书面语言方面存在一种或多种显著障碍,在听、想、说、读、写、拼写或进行数学计算的能力上存在缺陷。特定学习障碍是一种影响儿童接收、处理、分析或存储信息能力的问题。这种障碍会使儿童难以阅读、写作、拼写或解决数学问题 [1]。学生特定学习障碍的主要特征包括:自然智力水平、学习成绩低于预期、学习速度慢、认知发展、教育基础重复、学习水平差异、不同学习、课程学习。能力和技能之间存在显著差异,注意力范围狭窄[2]。换句话说,他们尽管智力正常,却无法学习,虽然成长的各个方面与生物成熟度有直接关系,但一般认为生物和非生物因素都可以发挥作用[3]。人类的学习工具随着环境而变化。如果今天的儿童和青少年
随着新闻机构在公众不信任的问题上挣扎,人工智能(AI)的记者可能会通过激活机器启发式方法来减少对敌对媒体偏见的看法,这是一种普遍的心理捷径 - 观众将机器视为客观,系统性和准确性。本报告详细介绍了两个实验的结果(分别为n = 235和279,美国成年人)复制了作者以前的工作。与先前的工作一致,目前的研究为AI记者的触发机器神秘主义评估而又减少了对敌对媒体偏见的看法的论点提供了更多支持。延长了过去的工作,目前的研究还表明,偏置缓解过程(如果AI,机器神经疗法激活,因此减少了偏差)会受到源/自我意识到的不一致的调节,尽管在两个问题的覆盖范围内不同(堕胎合法化和共同化疫苗的疫苗授权)。
最近在操纵和运动领域取得了显着进展,但移动操作仍然是一个长期以来的挑战。与运动或静态操纵相比,移动系统必须在非结构化和动态环境中可行的多种长距离任务。尽管应用程序广泛且有趣,但在开发这些系统(例如基础和手臂之间的协调)时,有很多挑战,依靠在船上感知到感知和与环境互动,最重要的是,同时整合了所有这些部分。先前的作品使用模块化技能来解决问题,以使其动机和操纵被微不足道地捆绑在一起。这引起了多个限制
