通过利用量化误差和加性噪声之间的相似性,可以通过使用扩散模型“ denoise”量化引入的伪影来构建基于扩散的图像压缩编解码器。但是,我们确定了这种方法中的三个差距,从而导致量化的数据排除在扩散模型的分布之外:噪声水平,噪声类型和由离散化引起的差距的差距。为了解决这些问题,我们提出了一个新型的基于量化的正向扩散过程,该过程是理论上建立的,并桥接了上述三个差距。这是通过经过精心量身定制的量化时间表以及对均匀噪声训练的扩散模型来实现的。与以前的工作相比,我们提出的架构也会产生一贯的现实和详细的结果,即使是在极低的比特率下,同时保持对原始图像的忠诚度。
现有的文本视频检索解决方案本质上是侧重于最大程度地提高条件可能性的模型,即P(候选人|查询)。虽然很简单,但这种事实上的范式却忽略了基本的数据分布p(查询),这使得识别出分布数据的挑战。为了解决这一限制,我们从生成观点创造性地解决了此任务,并将文本和视频之间的相关性建模为其关节概率P(候选人,查询)。这是通过基于扩散的文本视频检索框架(扩散-RET)来完成的,该框架将检索任务建模为从噪声中产生关节分布的过程。在训练过程中,从发电和犯罪的角度优化了Diffusionret,其发电机通过生成损失优化,并且具有对比度损失的训练的特征提取器。以这种方式,diffusionret巧妙地杠杆化了生成和歧视方法的优势。在五个常用的文本检索基准测试中进行了广泛的实验,包括MSRVTT,LSMDC,MSVD,ActivityNet字幕和DIDEMO,并具有出色的性能,证明了我们方法的效果。更加谨慎,没有任何修改,diffusionret甚至在外域检索设置中表现良好。我们认为这项工作带来了对相关领域的基本见解。代码可从https://github.com/jpthu17/diffusionret获得。
使用扩散模型进行图像修复通常使用预条件模型(即针对绘画任务进行微调的图像条件模型)或后条件模型(即在推理时重新用于绘画任务的非条件模型)。预条件模型在推理时很快,但训练成本极高。后条件模型不需要任何训练,但在推理过程中很慢,需要多次前向和后向传递才能收敛到理想的解决方案。在这里,我们推导出一种不需要昂贵训练但推理速度很快的方法。为了解决昂贵的推理计算时间,我们在潜在空间而不是图像空间上执行前向-后向融合步骤。这是通过扩散过程中新提出的传播模块解决的。在多个领域进行的实验表明,我们的方法达到或改善了状态
我们提出了Vidim,这是一个视频间隔的生成模型,该模型在启动和最终框架下创建了简短的视频。为了实现高保真度并在输入数据中产生了看不见的信息,Vidim使用级联的分化模型首先以低分辨率生成目标视频,然后在低分辨率生成的视频上生成高分辨率视频。我们将视频插补的先前最新方法归纳为先前的最新方法,并在大多数设置中演示了这种作品如何在基础运动是复杂,非线性或模棱两可的情况下失败,而Vidim可以轻松处理此类情况。我们还展示了如何在开始和最终框架上进行无分类器指导,并在原始高分辨率框架上调节超级分辨率模型,而没有其他参数可以解锁高保真性结果。vidim可以从共同降低所有要生成的框架,每个扩散模型都需要少于十亿个pa-rameters来产生引人注目的结果,并且仍然可以在较大的参数计数下享有可扩展性和提高质量。请在vidim- Interpolation.github.io上查看我们的项目页面。
提供给文本对图像差异模型的提示的质量决定了生成的内容对用户意图的忠诚程度,通常需要“及时工程”。要通过及时的工程来利用目标图像的视觉概念,当前方法在很大程度上通过优化然后将它们映射到伪tokens来依赖嵌入反演。然而,使用这种高维矢量表示是具有挑战性的,因为它们缺乏语义和可解释性,并且只允许使用它们时模拟矢量操作。相反,这项工作着重于反转扩散模型,以直接获得可靠的语言提示。这样做的挑战在于,由此产生的优化问题从根本上是离散的,提示的空间呈较大。这使得使用标准优化技术,例如随机梯度下降,困难。为此,我们利用延迟的投影方案来访问代表模型中词汇空间的提示。此外,我们利用了扩散过程的时间段与图像中不同级别的细节相差的发现。后来的,嘈杂的,前传扩散过程的时间段对应于语义信息,因此,此范围内的迅速反转提供了代表图像语义的令牌。我们表明,我们的方法可以确定目标图像的语义可解释和有意义的提示,该提示可用于合成具有相似内容的多样化图像。我们说明了优化提示在进化图像生成和概念删除中的应用。
文本对图像(T2I)生成模型最近成为一种强大的工具,可以创建照片现实的图像并引起多种应用。然而,将T2i模型的有效整合到基本图像分类任务中仍然是一个悬而未决的问题。促进图像锁骨表现的一种普遍的策略是通过使用T2I模型生成的合成图像来增强训练集。在这项研究中,我们仔细检查了当前发电和常规数据增强技术的缺点。我们的分析表明,这些方法努力产生既忠实的(就前景对象)而且针对领域概念的多样化(在背景上下文中)。为了应对这一挑战,我们引入了一种创新的类数据增强方法,称为diff-mix 1,该方法通过在类之间执行图像翻译来丰富数据集。我们的经验结果是,DIFF-MIX在信仰和多样性之间取得了更好的平衡,从而导致各种图像分类场景之间的性能显着提高,包括域名数据集的少量,常规和长尾分类。
背景和动机视觉策略学习涉及将视觉观察映射到运动动作上,使机器人能够有效地与环境互动。传统方法通常在多模式作用分布的复杂性以及对高精度和时间一致性的需求中挣扎。最近引入的扩散策略通过采用有条件的降级扩散过程来生成机器人动作,从而提供了有希望的解决方案。这些模型在产生复杂的行为方面表现出了卓越的性能,使其成为机器人操纵和组装任务的理想候选人。此外,整合自然语言处理(NLP)允许多功能任务调理,使机器人能够根据人类指令执行各种任务。
近年来见证了一代和重建范式深入融合的趋势。在本文中,我们扩展了可控制的生成模块的能力,以实现更全面的手网恢复任务:在单个框架中,手工网格的生成,内部网状,重建,重建和拟合,我们将其命名为H olistic H和MESH R Ecovery(HHMR)。我们的主要观察结果是,具有强大多模式可偿还性的单个生成模型可以实现不同类型的手网恢复任务,并且在这样的框架中,实现不同的任务只需要给出不同的信号作为条件。为了实现这一目标,我们提出了基于图形卷积和整体手工网状恢复的注意力卷积和注意力机制的多合一扩散框架。为了实现强大的控制能力,同时确保多模式控制信号的解耦,我们将不同的模态映射到共享特征空间并应用跨尺度随机
3D人姿势估计(3D HPE)任务使用2D图像或视频来预测3D空间中的人类关节坐标。尽管最新的基于深度学习的方法取得了进步,但它们主要忽略了可访问的文本和自然可行的人类知识的能力,而错过了有价值的隐性监督,以指导3D HPE任务。此外,以前的努力经常从整个人体的角度研究这项任务,从而忽略了隐藏在不同身体部位的细粒度指导。为此,我们基于3D HPE的扩散模型(名为FinePose)提出了一个新的细粒及时驱动的DeNoiser。它由三个核心块组成,增强了扩散模型的反向过程:(1)通过耦合辅助辅助文本和可学习的提示以模拟隐式指南的耦合知识,并通过耦合的辅助辅助文本和自然可行的零件知识,可以通过耦合的辅助辅助文本和自然可行的零件知识来构建精细的部分零件感知的提示。(2)Fine-
机器学习(ML)在统计缩减中起着越来越有价值的作用。能够利用培训数据中潜在的复杂的非线性关系,社区表现出ML学习缩小映射的巨大潜力。遵循完美预后(PP)方法,可以对ML模型进行历史重新分析数据的培训,以了解粗糙预测因子与更高分辨率之间的关系(即缩小)预测。一旦受过训练,这些模型就可以在一般循环模型(GCM)输出上进行评估,以产生区域缩小的结果。由于培训的计算成本相对较低和利用这些模型,它们可用于有效地降低气候模型的大集合,而不是区域与全球域。