脑电图(EEG)是一种非侵入性方法,它允许记录丰富的时间信息,并且是诊断各种神经疾病和精神病疾病的宝贵工具。脑电图的主要局限性之一是信噪比低,缺乏训练大型数据繁殖神经网络的数据可用性。共享大型医疗保健数据集对于推进医学成像研究至关重要,但是隐私问题通常会妨碍这种努力。深层生成模型已引起关注,以避免数据共享局限性,并作为生成数据以改善这些模型性能的一种方法。这项工作研究了具有光谱损失的潜在扩散模型,作为深层建模,以生成30秒的睡眠eeg信号窗口。光谱损失对于确保生成的信号在典型的EEG信号的特定频带上包含结构性振荡。我们使用两个大型睡眠数据集(Sleep EDFX和SHH)训练了模型,并使用了多尺度的结构相似性度量,Frechet Inception距离和光谱图分析来评估合成信号的质量。我们证明潜在扩散模型可以使用正确的神经振荡产生逼真的信号,因此可以用来克服脑电图数据的稀缺性。
主要关键词