这项研究探讨了机器学习指导设计在优化纳米化剂中的重要潜力,重点是减少机械系统中的摩擦和磨损。利用神经网络和遗传算法,研究表明了高级计算技术如何准确预测和增强纳米求的摩擦学特性。研究结果表明,与传统的矿物基油基润滑剂相比,纳米化剂,尤其是含石墨烯和碳纳米管的纳米化剂,在降低摩擦系数和磨损速率方面表现出明显改善。此外,这些纳米求的增强的热稳定性和载荷能力有助于大量的能源节省和提高的操作效率。这项研究强调了采用纳米化剂的经济和环境益处,强调了它们改变润滑技术并支持可持续工业实践的潜力。
高潮®1002D NAT 1是球形聚酰胺6粉末,粒径分布窄,平均直径为20µm。高潮®1002d NAT 1具有高熔化温度,高于210°C:即使在高温下处理时,颗粒的形状和粒径分布也可以保留。通过严格控制粒度分布和孔隙率,可以实现极高的质量,从而确保表现出色。高潮®是一系列高性能超细聚酰胺粉末,用作涂料,墨水,清漆和技术化合物中的多功能添加剂。由于其良好的分散能力,对流变学的影响降低及其低密度,因此在制剂中引入了高潮®聚酰胺粉。高潮®聚酰胺粉是表面修饰符,专门设计用于光泽控制,纹理创造和触觉特性调节。他们还提高了阻塞性并减少摩擦系数。磨损,刮擦,冲击电阻和涂料,油墨和清漆和技术化合物的柔韧性可以通过高潮®聚酰胺粉末显着改善。
摘要在这项研究中,厚度为50-100 nm的石墨烯纳米板(GNP)已被用来改善A360合金的机械和摩擦学特性,因为它们的非凡机械性能和固体润滑性性质。为了研究摩擦学特性,在各种温度下进行了圆盘测试,包括室温(RT),150 C和300 C。纳米复合材料的磨损行为的改善被称为磨损过程中暂时形成的硬质量GNP的固体润滑膜,因此摩擦系数(COF)和体积损失大大降低。磨料 - 粘合剂,氧化和轻度至关重要分别是RT,150 C和300 C的主要磨损机制。总体而言,结果表明,通过铸造方法与机械搅拌和超声化相结合制造的纳米复合材料具有有希望的磨损性能,尤其是在升高的温度下。这可能表明这些开发的材料可能是需要在需要高温磨损性能的工程应用中使用的潜在候选者。
我们在石墨烯双层中发展了热传输中流动驱动现象的理论。我们在电子流体力学方面工作,并专注于双重电荷中性点。尽管在中立点,电荷转运与流体动力流相关,但电子密度的热闪光导致层之间的阻力和热传递。双层系统中的热传输受这两种现象的控制。我们以层间距离和电子液体的内在电导率来表达拖动摩擦系数和层间导电性。然后,我们获得热电导矩阵,并确定系统中流体动力速度和温度的空间依赖性。对于较短的系统,热阻力是由阻力确定的。在更长的系统中,实现了完美的热阻力的情况,其中两层的流体动力速度在系统的内部相等。给出了单层和双层石墨烯设备的估计值。我们的理论的预测可以通过高分辨率热成像和Johnson-Nyquist非局部噪声温度计来测试。
摘要 - 准确识别复杂的地形特征,例如土壤组成和摩擦系数,对于基于模型的计划和越野环境中移动机器人的控制至关重要。光谱特征利用光吸收和反射的不同模式来识别各种材料,从而可以精确地表征其固有特性。机器人技术的最新研究探索了光谱的采用,以增强与环境的感知和相互作用。但是,安装这些传感器所需的巨大成本和精致的设置存在着广泛采用的强大障碍。在这项研究中,我们将RS-NET(RGB引入光谱网络),这是一种深层神经网络体系结构,旨在将RGB图像映射到相应的光谱签名。我们说明了如何将RS-NET与共同学习技术协同结合,以进行地形性质估计。初始结果证明了这种方法在表征广泛的越野现实世界数据集中的光谱特征方面的有效性。这些发现仅使用RGB摄像机强调了地形性质估计的可行性。
摘要。在本研究中,研究了磁流体力学 Carreau 纳米流体在加热旋转板上旋转微生物的精确近似。板以恒定均匀的倾斜速度移动。通过使用某些物理假设作为具有极限条件的不完全微分条件来获得控制条件。利用束相似性变换将这些非线性条件转换为耦合的标准微分条件。使用最佳同伦研究方法最佳同伦渐近法 (OHAM) 来获取流场因素的图形结果和均匀性质。研究并阐明了旋转微生物的速度、温度、固定和密度的图形表示。发现无量纲微生物的固定随着微生物的生物对流 Lewis 数和浓度差异变量而增加。还发现,由于吸引力和 Carreau 流体边界,无量纲速度会降低。给出了邻近运动边界(如皮肤摩擦系数、努塞尔特数、舍伍德数和运动微生物的厚度数)的轮廓图和数学结果。
ORGASOL ® 1002 D NAT 1 是球形聚酰胺 6 粉末,粒度分布窄,平均直径为 20µm。Orgasol ® 1002 D NAT 1 的熔点高于 210°C:即使在高温下加工,颗粒的形状和粒度分布也能保持不变。通过严格控制粒度分布和孔隙率,可实现极高的质量水平,确保出色的性能一致性。ORGASOL ® 是一系列高性能超细聚酰胺粉末,用作涂料、油墨、清漆和技术化合物中的多功能添加剂。由于 ORGASOL ® 聚酰胺粉末具有良好的分散能力、对流变性的影响较小且密度低,因此很容易在配方中加入它们。ORGASOL ® 聚酰胺粉末是表面改性剂,专为光泽控制、纹理创建和触觉特性调整而设计。它们还可以提高抗粘连性并降低摩擦系数。使用 ORGASOL ® 聚酰胺粉末可以显著提高涂料、油墨、清漆和技术化合物的耐磨性、耐刮擦性、耐冲击性和柔韧性。
摘要:在本文中,详细研究了由高电流脉冲电子束处理的ZR-17NB合金的微观结构和磨损固定性。使用X射线衍射(XRD)分析后的脉冲处理后的相位变化,显示了由β(ZR,NB)相的一部分形成的β(nb)相和α(ZR)相。另外,还发现了β(ZR,NB)衍射峰的变窄和移动。扫描电子显微镜(SEM)和金相分析结果表明,高电流脉冲电子束(HCPEB)治疗之前合金表面的显微结构是由等上晶体组成的。但是,在15和30脉冲处理后,陨石坑结构得到了显着造成的。此外,还发现合金表面在30脉冲处理后经历了共菌体转化,并且发生了β(ZR,NB)的反应→αZR +βNB。显微硬度测试结果表明,随着脉冲数量的增加,微标志的值会出现向下趋势,这主要是由于谷物的块状和较软的β(nb)相变的形成。磨损耐药性测试结果表明,摩擦系数首先增加,然后降低,然后随脉冲数的增加而增加。
摘要:在这项研究中,通过模拟的深海摩擦和磨损测试系统研究了不同静水压力(0.1-60 MPa)下多层石墨样碳(GLC)涂层的摩擦学行为和机制。透明的摩擦界面的形态和组成被彻底表征。调查结果表明,在静水压力升高或重负荷条件下,摩擦系数(COF)更大(但未超过0.02)。GLC涂层主要经历磨料磨损,并且磨损程度随着静水压力和负荷的增加而增强。摩擦界面的石墨化和基于硅的润滑产物的生产变得越来越明显。因此,通过改变摩擦接触表面的状态来实现静水压力对GLC涂层摩擦性能的影响。本质上,静水压力通过产生额外的压缩负荷来修饰摩擦对的实际接触面积,以使静水压力的增加对施加载荷的增加具有相似的影响。随着静水压力和施加载荷的增加,摩擦对表面上磨损平滑的趋势变得更加明显。在摩擦过程中生成的石墨转移膜和基于硅的材料改善了摩擦对的润滑性能,从而导致摩擦对磨损极低。
一个简单的空间电梯由一个绳索组成,该系绳延伸,远远超出了地球同步高度和有效载荷的装置,该设备抓住和爬上了系绳。是一种基于摩擦的对方登山者,最有可能用当今的技术来构建,看来该系绳材料的大规模生产也可以实现。登山车轮和系绳之间的界面处的物理条件首先确定攀登的所有可能性,然后确定系绳的设计参数。检查了升压扭矩,拉伸,压缩和剪切强度,摩擦,界面温度,导热率和辐射冷却的条件,并用于设定系绳材料的最低要求。石墨烯层状(GSL)由单晶石墨烯层组成,似乎是具有足够高的拉伸强度的出色系绳材料。增加了其层间交叉键合以及使用登山车轮材料的较大摩擦系数可以使其满足攀登条件。最终确定GSL的适用性需要测量许多材料属性的许多,但尚不清楚。提出了此类测量的清单,并提供了部分贸易研究的部分列表和系绳设计的迭代列表。