为研究长非编码RNA(LNCRNA)的生物学功能是必要的有效的功能丧失研究。有各种方法可用,包括RNA沉默,反义寡素和基于CRISPR的基因组编辑。基于CRISPR的基因组编辑是在基因组水平上灭活LNCRNA功能的最广泛使用的。可以通过删除启动子和第一个外显子(PE1)来实现LNCRNA函数,引入前末端poly(a)信号,或删除整个位点,这与Messenger RNA(mRNA)使用的框架策略不同。然而,lncRNA和邻居基因之间的复杂基因组相互作用使得准确解释lncRNA功能具有挑战性。本文讨论了每种LNCRNA敲除方法的优点和缺点,并设想了促进LNCRNA功能研究的潜在未来方向。
分化(图 4d),表明伤口生物学存在重大差异。我们对三种条件下的 10,612 个细胞进行了 scRNA-seq,这些细胞被鉴定为成纤维细胞、髓细胞、中性粒细胞、淋巴细胞和红细胞(图 5b、c)。在所有细胞类型中,成纤维细胞在各组之间的差异表达基因数量(DEG,FC > 0.5,p< 0.05)最多,这表明我们的工程化 DC 疗法对伤口床内成纤维细胞基因表达的影响最大(图 5d、e)。在成纤维细胞表达的差异表达最多的基因中,我们发现了几种已被证明与伤口愈合密切相关的基因。用 Ndrg2-KO DC 治疗的伤口中的成纤维细胞几乎只表达神经生长因子受体 Ngfr,该受体已被证明
植物从转基因树种或外来树种迁移到附近土地或通过与野生近缘种杂交而产生的基因流动是公众和监管机构关注的焦点。目前已存在许多减轻潜在基因流动的遗传策略;然而,开花开始的长期延迟严重制约了研究的进展。在通过 CRISPR 敲除杨树关键花基因 LEAFY 和 AGAMOUS 的同源物后,我们利用热诱导的 FT 过表达来加速对预期花表型的评估。我们选择了先前表征的 CRISPR-Cas9 诱导的双等位基因变化的事件,然后用在强组成型启动子或热诱导启动子控制下的拟南芥 FLOWERING LOCUS T (AtFT) 基因重新转化它们。我们成功地在杨树的雄性和雌性克隆中获得了开花,在花、分株和插入事件中观察到了各种各样的花序和花形态。总体而言,从选定的 LFY 和 AG 靶向事件中获得的花与这些基因功能丧失的预测一致。LFY 靶向事件显示具有叶状器官的小柔荑花序,AG 靶向事件具有嵌套花器官,与花确定性降低和缺乏形成良好的心皮或花药一致。这些发现证明了杨树花在遗传加速开花过程中具有很大的发育可塑性,这可能具有园艺价值。它们还提供了有关这两个基因靶标敲除后花表型和表观不育性的有益早期观察。
基因工程将细胞置于选择压力之下,需要几轮细胞倍增才能获得编辑后的克隆。因此,为避免基因组不稳定性积累,我们建议使用解冻后 2-3 次传代的细胞,尽可能接近质量测试过的细胞库。我们还建议在缺氧条件下(37 C/5% CO 2 /5% O 2 )维护 hiPSC 并进行基因编辑实验,因为在缺氧条件下培养 hiPSC 有几个优点,包括增强多能性、增加增殖、减少氧化应激、提高重编程效率、更好的分化潜力和低遗传不稳定性频率。2、3 这些好处可以提高 hiPSC 的质量和功能,这对于再生医学和疾病建模中的下游应用至关重要。Vallone 等人描述了描述板涂层、细胞维护以及酶促和非酶促解离的一般方案。4
由于产品滴度相对较高且生产成本较低,杆状病毒/昆虫细胞表达系统被认为是生物制药行业的多功能生产平台。它在生产复杂的多聚蛋白质组装体(包括病毒样颗粒 (VLP))方面表现出色,而病毒样颗粒 (VLP) 被认为是对抗新出现病毒威胁的有希望的疫苗候选物,这使得该系统更具吸引力。然而,在 VLP 生产过程中芽生杆状病毒的共同形成对下游加工构成了严峻挑战。为了减少表达上清液中芽生杆状病毒的数量,我们开发了一种基于 CRISPR/Cas9 的可诱导敲除系统,并与两个杆状病毒载体共感染:一个携带 Cas9 核酸酶,另一个整合了 sgRNA 表达序列。使用我们的设置可以单独生成高滴度病毒,因为只有当两种病毒同时感染细胞时才会发生敲除。当芽生必需基因 gp64 和 vp80 被敲除时,我们测量到杆状病毒滴度降低了 90% 以上。然而,结果,我们还测定了较低的整体 eYFP 荧光强度,表明重组蛋白产量减少,这表明需要进一步改进工程和纯化,以最终最大限度地降低利用杆状病毒/昆虫细胞表达系统生产疫苗的成本和时间。
摘要:三阴性乳腺癌(TNBC)是一种侵袭性极强的乳腺癌亚型,具有肿瘤内异质性的特点,与其他类型的乳腺癌相比,TNBC更易发生侵袭和转移。本研究旨在探讨腺病毒介导的成簇调控间隔短回文重复序列(CRISPR)/Cas9系统是否能够有效靶向TNBC细胞中的zeste增强子同源物2(EZH2),为CRISPR/Cas9系统用于乳腺癌的基因治疗奠定实验基础。本研究利用CRISPR/Cas9基因编辑工具在MDA-MB-231细胞中敲除EZH2,建立EZH2敲除(KO)组(EZH2-KO组),另设GFP敲除组(对照组)和空白组(Blank组)。通过T7 内切酶I(T7EI)酶切、mRNA检测及Western印迹实验验证载体构建及EZH2-KO成功。通过MTT、划痕实验、Transwell及体内肿瘤生物学实验检测基因编辑后MDA‑MB‑231细胞增殖及迁移能力的变化。mRNA及蛋白检测结果显示,EZH2‑KO组EZH2的mRNA及蛋白表达均明显下调。EZH2 mRNA及蛋白表达的差异在EZH2‑KO组中有所体现。
人类CD34 +造血干细胞和祖细胞(HSPC)是临床HSC移植的标准细胞来源,以及实验性异种移植,以产生“人性化小鼠”。为了进一步扩展这些人源性小鼠的应用范围,我们开发了一种方案,以在移植前有效地编辑人CD34 + HSPC的基因组。过去,操纵HSPC在体外培养过程中本质上难以转导,并且在体外培养过程中迅速失去其干性和植入潜力,这使操纵HSPC变得复杂。然而,使用SGRNA的优化核反射:CAS9核糖核蛋白复合物,我们现在能够在具有几乎100%效率的CD34 + HSPC中编辑候选基因,并在具有高I IntrineAge srimineage syprineage hampopooietic smatopoietic的较高的小鼠中将这些修饰的细胞移植在免疫缺陷的小鼠中。结果是一种人源化的小鼠,我们从中从其人类免疫系统中删除了感兴趣的基因。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 6 月 21 日发布。;https://doi.org/10.1101/2023.06.20.545315 doi:bioRxiv preprint
Chang 等,2012;Fazili 等,2016;Rossi 等,2018)。研究表明,赋予 hvKp 高毒力表型的最典型的毒力因子由位于毒力质粒上的基因编码,其中包括 iuc/iro(铁载体 aerobactin/salmochelin 的生物合成基因)、rmpA/rmpA2(增加荚膜产量的调节剂)和 peg-344(功能未知的代谢转运蛋白)(Russo and Marr,2019)。因此,大型毒力质粒上毒力基因的丢失将显著降低 hvKp 的毒力。尽管对hvKp毒力机制的研究已经取得了很大进展,但仍有许多问题尚未揭示:例如,毒力基因之间如何相互作用,它们如何调控hvKp的高毒力表型,以及毒力因子如何与宿主免疫系统相互作用。针对hvKp毒力质粒的有效基因编辑方法对于理解这些未知机制至关重要。目前,对hvKp毒力质粒进行基因敲除的报道很少,主要依赖于随机转座子插入和自杀质粒介导的同源重组(Cheng等,2010;
