摘要:如今,现代粒子物理实验的前端电子设备需要非常精确的时钟信号,以供读取链中的不同元素。时钟分配系统,模拟和数字转换器的时间,千兆串行链路是需要抖动非常低的时钟信号的组件的示例。拟议的项目旨在开发新的辐射耐受性相锁环(PLL)IP块,用于抖动低于10 ps的时钟信号生成,或者在PLL控制中添加数字路径的情况下更好。该块将在现代TSMC 65 nm技术中开发,以允许其在EIC项目中考虑的未来读数ASIC中,尤其是在我们团体目前正在开发的SALSA MPGD读数芯片中。PLL也可以是具有相调整功能的低功率独立时钟扇出ASIC的基础,这对于特定的EIC前端应用可能需要。该项目将涵盖IP块的仿真和设计及其原型制作和验证。
摘要光原子时钟和光学时间传输的最新进展已使精确计量学的新可能性进行了基本物理和时机应用的两种测试。在这里,我们描述了一个太空任务概念,该概念将将最先进的光原子钟放在地球周围的怪异轨道上。高稳定性激光链路将将轨道航天器的相对时间,范围和速度连接到地球站。此任务的主要目标是测试重力红移,这是一种经典相对论的经典测试,其灵敏度超出了当前限制的30 000倍。其他科学目标包括其他相对论测试,对暗物质的搜索和基本常数的漂移以及建立高精度的国际时间/地理参考。
摘要 探测标准模型基本常数的变化将为我们提供新物理学的有力证据,并可能揭开暗物质和暗能量的面纱。在这项工作中,我们讨论了如何使用原子和分子钟网络在广泛的时间尺度上以前所未有的灵敏度寻找此类变化。这正是最近启动的 QSNET 项目的目标:用于测量基本常数稳定性的时钟网络。QSNET 将包括最先进的原子钟,但也将开发下一代分子和高电荷离子钟,以增强对基本常数变化的灵敏度。我们描述了 QSNET 的技术和科学目标,并评估了其预期性能。我们表明,在 QSNET 探测的参数范围内,我们要么会发现新物理学,要么会对基本对称性的违反和一系列超出标准模型的理论施加新的约束,包括暗物质和暗能量模型。
1 中国医学科学院北京协和医学院北京协和医院神经内科,北京,中国 2 波士顿大学医学院解剖学和神经生物学系,波士顿大学,马萨诸塞州波士顿,美国 3 波士顿大学医学院 Framingham 心脏研究,波士顿大学,马萨诸塞州波士顿,美国 4 波士顿大学医学院神经内科系,波士顿大学,马萨诸塞州波士顿,美国 5 波士顿大学公共卫生学院流行病学系,波士顿大学,马萨诸塞州波士顿,美国 6 波士顿大学医学院 Slone 流行病学中心,波士顿大学,马萨诸塞州波士顿,美国 7 波士顿大学阿尔茨海默病研究中心,波士顿大学,马萨诸塞州波士顿,美国 8 加利福尼亚大学戴维斯分校神经内科和神经科学中心,加利福尼亚州萨克拉门托,美国 9 罗文大学骨科医学院新泽西成功老龄化研究所老年医学和老年学系和心理学系,新泽西州,美国 10 马萨诸塞大学陈医学院医学系临床信息学分部,马萨诸塞州伍斯特,美国
触发器(FF)是数字系统设计中大量使用的基本存储组件,涉及流水线结构和由 FF 构建的模块。FF 占总功耗的很大一部分,并且占数字系统的芯片面积很大。因此需要低功耗和小面积的 FF 设计。本文中低功耗 17 – 真单相时钟 (TSPC) 推理方法在高级计划中得到了广泛应用。提出了一种45 nm CMOS触发器。所提出的TSPC FF的逻辑结构为主从型,其中主级由静态CMOS逻辑形成,而从级由静态CMOS逻辑和互补传输晶体管逻辑的混合组合形成。所提出的TSPC FF电路是完全静态的,因为在操作期间没有内部节点处于浮动状态,这实际上防止了泄漏功耗。所提出的TSPC FF是通过在面积和功耗方面优化17晶体管逻辑结构减少触发器(LRFF)而设计的,但不影响FF的功能。在DSCH和MICROWIND工具中,使用gpdk 45 nm技术库以1v的电源电压vdd和500mhz的时钟频率实现和模拟了三个FF,即基于传输门的触发器(TGFF)、LRFF和所提出的TSPC FF。
*主要作者:vladimir.schkolnik@physik.hu-berlin.de,+49(0)30 2093-7625 1 humboldt-UniversitétZu Zu at Berlin,Newtonstr。15,12489德国柏林2 Helmholtz-Institut Mainz,Johannes Gutenberg-Universitat Mainz,55128德国Mainz,德国3物理学,加利福尼亚州加利福尼亚大学94720-94720-7300物理学,442加利福尼亚州斯坦福市购物中心94305 6原子开发商,2501 Buffalo Gap Rd#5933,Abilene,Texas,Texas 79605 7 79605 7物理系,威斯康星大学麦迪逊大学,麦迪逊大学,威斯康星州53706,83706 8 (WPI),东京大学高级研究机构,东京大学,喀西瓦大学,喀西瓦,千叶277-8583,日本日本10号物理学院,锡德尼悉尼,2006年,新南威尔士州,2006年,澳大利亚11吉拉大学11吉拉大学,国立标准师和技术学院,科罗拉多大学,科罗拉多州科罗拉多大学,科罗拉多州科罗拉多大学,加利福尼亚州8030940404040403030994033099903099.440303099944033099940309990303年。加利福尼亚州帕萨迪纳技术学院91109
光原子时钟和光学时间传输的最新进展使得针对基本物理和时机应用测试的精确计量学方面有了新的可能性。在这里,我们描述了一个太空任务概念,该概念将将最先进的光原子钟放在地球周围的怪异轨道上。高稳定性激光链路将将轨道航天器上的相对时间连接到地球站。此任务的主要目标是测试重力红移,这是一种经典相对论的经典测试,其灵敏度超出了当前限制的30,000倍。其他科学目标包括其他相对论测试,对暗物质的搜索和基本常数的漂移以及建立高精度的国际时间/地理参考。
光学原子钟和光学时间传输的最新进展为基础物理测试和计时应用的精密计量提供了新的可能性。这里我们描述了一个太空任务概念,该概念将把最先进的光学原子钟放置在地球偏心轨道上。高稳定性激光链路将把轨道航天器的相对时间、范围和速度连接到地面站。这次任务的主要目标是测试引力红移,这是广义相对论的经典测试,灵敏度是当前极限的 30,000 倍。其他科学目标包括其他相对论测试、增强对暗物质和基本常数漂移的搜索,以及建立高精度国际时间/测地线参考。1. 简介
Leonardo是一家全球高科技公司,是航空航天,国防与安全和意大利主要工业公司的顶级世界参与者之一。被组织成五个商业部门,伦纳多在意大利,英国,波兰和美国都有重要的工业业务,在那里它也通过包括Leonardo DRS(国防电子)以及合资企业和合作伙伴的子公司运营:ATR,MBDA,MBDA,TELESPAZIO,TELESPAZIO,THALES ALENIA SPACE和AVIO。莱昂纳多(Leonardo)通过利用其技术和产品领导地位(直升机,飞机,航空结构,电子产品,网络安全和空间)来参加最重要的国际市场。在米兰证券交易所(LDO)上列出,2020年,莱昂纳多(Leonardo)记录了134亿欧元的合并收入,并在研究与开发方面投资了16亿欧元。该公司自2010年以来一直是道琼斯可持续发展指数(DJSI)的一部分,并在2020年连续第二年被任命为航空航天和国防领域的可持续性全球领导者。