氮化铝 (AlN) 具有宽带隙 (6.2 eV)、高介电常数 (k B 9)、高电阻率 (r B 10 11 –10 13 O cm) 和高热导率 (2.85 W K 1 cm 1 )1 等特性,是微电子和光电子领域的重要材料。由于 AlN 具有压电特性,因此也可用于微机电系统 (MEMS 设备)。2 非晶态 AlN 有多种用途,例如用作钝化层和介电层。3 AlN 薄膜通常通过反应溅射、4 化学气相沉积 (CVD)、5 反应分子束外延 (MBE) 6 和原子层沉积 (ALD) 沉积。AlN 的 ALD 在需要坚固保护层的应用方面引起了广泛关注,例如开发耐腐蚀、绝缘和保护涂层。7
b'功能陶瓷对于电池的可扩展生产固体电解质至关重要。li-garnet li 7 la 3 Zr 2 O 12 D(LLZO),尤其是其立方相(Cllzo),由于其高LI + conductitivity和广泛的电化学稳定性窗口而引起了人们的注意。但是,高烧结温度引起了对阴极界面稳定性,生产成本和可扩展制造能源消耗的担忧。我们显示了一种替代\ Xe2 \ x80 \ x9csinter-free \ xe2 \ x80 \ x9d途径,以稳定Cllzo作为其烧结温度的一半胶片。具体而言,我们建立了一个时间温度的翻译(TTT)图,该图可捕获基于结晶焓分析的非晶态 - 结晶的LLZO转换,并确认在500 \ xc2 \ xc2 \ xb0的低温下进行薄膜薄膜的稳定稳定。可用于针对生产中碳足迹减少的电池电池设计。
在过去的几十年里,材料对于人类的成长、繁荣、安全和生活质量至关重要。自古以来,新材料一直是每个时代最伟大的成就之一。它们为土木工程、化工、建筑、核能、航空、农业、机械、生物医学和电气工程等领域的新技术铺平了道路,这些技术利用了生物材料、包装材料和柔性电子产品等功能材料。具体来说,先进材料的成分、结构和表面经过功能化,赋予了特定的应用导向特性。本期特刊将介绍用于先进应用的纳米结构功能材料的合成、加工和表征方面的一些最新进展。它将结构和性能与实际应用联系起来。陶瓷、复合材料、电子和光电材料、非晶态材料、晶体材料、薄膜和纳米结构材料都是此类材料的例子。
有序二维共价有机骨架(2D-COF)的原子级精确设计机会与非晶态线性聚合物、交联聚合物和超支化聚合物完全不同,从而可以前所未有地操纵构成含杂原子(N、S 和 O 等)功能团的初级和更高级排列。[1] 这类新兴的有序聚合物材料表现出有机亚基的网状生长,这些亚基通过强共价键(席夫键形成、[2] 环硼氧烷键、[3] C C 键形成、[4] 酰胺键、[5] 吩嗪键、[6] 苯并噻唑键、[7] 二恶英、[8] 二硫代丙烷键[9] 等)相互锁合,通过相邻层之间的 π – π 相互作用配置成三维阵列,并且对组成和性能具有良好的预测。结构的预测是
典型的超薄氧化膜由晶体金属支撑物上的单层氧化物材料组成。在某些情况下,薄膜可能由两到三个单层组成,但通常这些超薄膜的厚度不超过一纳米,可以被视为二维材料。1 扫描隧道显微镜 (STM) 是研究这些薄膜的绝佳方法,因为这种技术可以在非常高的放大倍数下对表面进行成像。2 为了获得原子分辨率图像,STM 要求样品具有导电性、无表面污染物并且在原子尺度上平坦。STM 不仅可以揭示表面和薄膜的结构,还可以用于研究原子级缺陷,例如原子空位和杂质 3 或更多扩展结构,例如两个具有不同晶体取向的超薄膜相遇的域边界。STM 还可以对非晶态氧化物膜进行非常详细的研究。
水在创造和维持生命方面发挥着重要作用,可视为地球上最重要的分子。地球上的水以液态和结晶冰的形式存在,但宇宙中的大部分水以无定形状态存在于星际颗粒表面 1 。第一种人造无定形水于 1935 年通过气相沉积法制成 2 ,但至今,无定形水的最基本特性之一:玻璃化转变温度,仍不清楚。根据制备方法 3 ,无定形水有多种形式。无定形水是通过压缩冰 I h 以获得高密度无定形形式 (HDA) 4 而产生的。随后,通过在环境压力下重新加热,可以将这种 HDA 形式转化为低密度无定形形式 (LDA)。另一种通常称为无定形固体水 (ASW) 的形式可以通过气相沉积法产生,存在于星际尘埃颗粒中 1 。还可以通过在预冷至 77 K 5 的 Cu 基板上沉积蒸汽,在实验室中生成和研究 ASW。最后,通过将悬浮的液态水滴以超音速喷射到预冷至 77 K 6 的 Cu 基板上,冷却可生成超淬火玻璃水 (HGW)。这些非晶态水是否可以正式被视为玻璃状,取决于它们是否表现出可测量的玻璃化转变。在这方面,水的玻璃化转变话题已经陷入争议超过四十年 7-14 。根据对退火 HGW 的直接量热测量,水的玻璃化转变温度 T g 为 136 K 已被广泛接受 6 。还发现该值与二元水溶液的 T g 外推一致 7 。然而,后来有人认为,根据对多个超淬玻璃的预 T g 放热曲线的测量,正确的 T g 应该更接近 165 K 10 。然后得出结论,由于在以接近 20 K/min 的常规速率加热时快速结晶,因此无法直接测量非晶态水的 T g 。进一步有人认为,在 136 K 观察到的吸热实际上是先前退火程序产生的阴影 T g 11 。这与以下观察结果一致:136 K 下微弱吸热的幅度只是预期加热幅度的一小部分
同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高约 10%。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高出 150%。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,通过将声子传输到原生非晶态 SiO 2 壳层来实现相关。这项工作发现了迄今为止报道的所有材料中室温下 κ 的最强同位素效应,并启发了同位素富集半导体在微电子领域的潜在应用。
同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高 ∼ 10 %。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高 150 %。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,并通过声子传输到原生非晶态 SiO 2 壳层而相关。该信发现了迄今为止报道的所有材料中室温下κ同位素效应最强的材料,并启发了同位素富集半导体在微电子领域的潜在应用。
相机械法、液相剥离或液氮中的气体剥离。然而,得到的h-BN材料往往存在表面积低或晶体结构低的问题9-12。最近,我们的研究小组报道了一种使用镁金属将非晶态h-BN转化为结晶h-BN的策略。13然而,这种熔融金属熔剂方法需要严格的转变条件(900℃),并且即使在热处理后采用酸洗程序也会引入潜在的杂质。此外,液态镁金属易燃,需要严格的惰性气体条件以及独特的不锈钢高压釜。另外,金属熔剂法不能控制反应并实现所需的结晶程度。在此,我们报道了一种优越的电化学方法,避免了使用熔融镁金属及其相关的安全隐患。我们假设是否有可能利用熔融的 MgCl 2 原位生成 Mg 金属,类似于之前使用熔融的 CaCl 2 的过程。14, 15
分子结构:本讲座探讨聚合物结构,重点介绍其分子排列,包括线性、支链和交联形式,以及这些结构如何影响强度、柔韧性和热稳定性等特性。了解这些关系是设计用于各种应用的聚合物的关键。 聚合物固体结构:本讲座研究聚合物固体的结构,重点介绍晶体、非晶态和半晶体排列。它讨论了这些结构变化如何影响机械、热学和光学特性,影响它们在工程和工业应用中的使用 聚合物的弹性:本讲座介绍聚合物的弹性,重点介绍其在应力下变形和恢复的能力。它解释了影响弹性的因素,例如分子结构、温度和交联,并强调了在柔性和弹性材料中的应用 粘弹性:本讲座探讨粘弹性,即聚合物在应力下同时表现出粘性(流动)和弹性(变形)行为的特性。关键主题包括时间相关响应、应力松弛和蠕变,并提供记忆泡沫和生物医学设备等材料的应用示例。