Historical Overview ............................................................4 The Advent of Modern Robotics .........................................6 Evolution of Automation .....................................................7 Emergence of CNC Technology ........................................10 Technical Progress of CNC (Computer Numerical Control) .........................................................................10 Integration and Advancements ...................................................................................................................................................................................................................................................................................................................................................................................................................................
本丛书涵盖了广义上运用知识和智能的系统和范例。其范围是具有嵌入式知识和智能的系统,这些系统可应用于解决工业、环境和社会中的世界问题。它还侧重于有效实现这一目标的知识转移方法和创新战略。智能系统工具和广泛应用的结合需要科学、技术、商业和人文学科的协同作用。本丛书将包括会议论文集、编辑合集、专著、手册、参考书和其他相关类型的书籍,涉及智能系统和技术可以提供创新解决方案的科学和技术领域。
本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
1 即使在ISO内部,机器人安全标准也是与汽车安全标准分开制定的。 此外,国际机器人制造商联合会(IFR)在其机器人定义或统计报告中没有包括汽车或自动驾驶汽车。
本本学论文研究了使Ari人形机器人能够使用机器学习和计算机视觉中的基本概念来学习和识别新对象的任务。该研究围绕着开发和实施直接向前的3D对象检测和分类管道,目的是使机器人能够识别以前尚未遇到的对象。该方法整合了开放式识别和增量学习的基本方面,重点是使用ARI机器人在实用环境中应用这些技术。通过一系列元素实验评估了实施系统的有效性,重点关注其检测和分类新的观察的能力。这些初始测试提供了有关系统在受控环境中的基本功能及其潜在效用的见解。本文在介绍性层面上有助于掌握机器人技术,并在实用机器人背景下对机器学习和计算机视觉的使用进行了初步探索。它为在机器人对象识别领域的未来研究奠定了基础。
摘要这项研究调查了Ubuntu哲学与撒哈拉亚州非洲的AI驱动新闻实践的融合。特别关注其挑战,机遇和对提高包容性的影响,该研究描述了实际的询问行为,包括优先考虑多样化的数据源,建立道德准则,促进AI素养,确保透明度和问责制,并分配公平的资源。借鉴了刚果DRC,肯尼亚,坦桑尼亚,乌干达和赞比亚的记者的观点,发现非洲记者在与人工智能工具的互动中遇到了各种经验,从热情的拥抱到对他们的重视能力和代表性和代表性。在背景下,该研究提出了一种受Ubuntu哲学启发的规范视角,强调了关系,社会进步,社会和谐和人类尊严,是负责在新闻业中使用AI的指导框架。通过在Ubuntu哲学中重新构想AI新闻业,该研究强调了创造一种技术性景观的潜力,在该景观中,所有个人和社区都得到公平地对待,与相互联系的NESS,社区责任和集体福祉的原则保持一致。
解决方案必须包含一个跨多个通信渠道的自动化全天候人工智能聊天机器人,其中不到 10% 的互动会产生搜索结果、“我不知道”的回答或其他类似的间接回应。解决方案必须是定制的,以了解每个部门或校园特有的主题,而不是通过模板内容采取一刀切的方法。解决方案的人工智能聊天机器人必须默认驻留在机构的网站上,而不是外部平台或应用程序上。用户必须能够通过机构网站以外的渠道访问解决方案的人工智能聊天机器人,例如社交媒体平台、短信、移动应用程序等。解决方案必须与“家用”设备(如 Amazon Alexa)集成,以允许用户与机器人互动。解决方案必须为管理员提供工具,以便根据需要编辑或添加响应,而无需供应商的协助。
在Marwan Hamze博士的监督下,该项目是在东京科学大学的吉田教授实验室的国际四个月实习的一部分。主要目的是为加强机器人手臂控制学习的应用的应用做出贡献。我的工作包括在模拟和真实环境中为机器人组开发和实施控制算法。强化学习使避免复杂的运动学模型成为可能,从而为机器人提供通过与环境直接互动来优化其行为的能力。我将精力集中在优化XARM6机器人手臂控制上,并从科学文献中适应方法。我在模拟中首先测试了这些算法,然后将它们应用于真实环境以评估其稳健性。我的目标是获得加强对人形机器人控制的技能,以控制川崎的Kaleido机器人,尺寸为1.80 m,重80 kg。这个项目使我能够增强机器人技术和人工智能方面的技术技能,同时促进该扩展领域应用的研究。
1简介自主控制算法的设计是一项艰巨的任务,因为它传统上需要大量的现实测试,这既耗时又昂贵。仿真是自治设计的宝贵工具,例如,以时间和成本效益的方式协助参数调整,算法测试。此外,在机器学习范围(ML)的范围内,由于其生成训练数据的能力,模拟具有吸引力。在此,我们证明了模拟引擎[1]和自治研究床(ART)[2]平台来促进自治政策制定过程,以避免ML控制政策。这项工作建立了以前的贡献,这些贡献证明了控制策略的各种多速路径的可传递性[3,4]。这项研究证明了通过机器学习(ML)避免障碍物的额外能力。ML已通过收集的数据进行了培训,而人类驾驶员则在模拟器中驱动。
交互式聊天机器人应用程序是现代时代的最新发明。医疗保健行业与人际交往密切相关,似乎像聊天机器人这样的对话式人工智能应用程序更为普遍。聊天机器人的响应方式应该让用户感觉自己正在与真人交谈。聊天机器人根据清晰的数据集和可持续的后端逻辑进行响应以生成结果。医疗聊天机器人通过以类似人类的方式与用户互动,简化了医疗保健提供者的工作并有助于提高他们的绩效。医疗保健领域的聊天机器人可能具有为患者提供即时医疗信息、在疾病出现的第一个迹象时推荐诊断或将患者与社区中合适的医疗保健提供者 (HCP) 联系起来的潜力。[3]