抽象的心脏病和机器学习是两个不同的词,其中一个与医学领域有关,另一个与人工智能有关。在医疗中,大多数人都面临着心脏病的问题,机器学习正在发展计算机科学领域。心脏病被称为心脏病,它提供了更多的数据或信息,应收集它以提供患者的报告,并且机器学习还需要用于预测和解决问题的数据。机器学习技术用于预测心脏病的预测,在这种预测中,它以更少的计算时间和更高的准确性来促进其健康。心脏病预测需要大量的数据来预测,在云计算中,我们也有更多数据,并且在云中可用的数据很难分析。因此,我们使用机器学习算法或技术来预测心脏病,并且以相似的方式应用了这些算法或技术来预测或分析云中可用的数据。在本文中,我们将使用称为Backpropagation算法的机器学习算法,后来我们以后使用优化算法。反向传播算法涉及人工神经网络。反向传播是一种方法,用于计算一批数据后每个神经元的误差贡献(在图像识别,多个图像中)。这是由包围优化算法使用的,以调整每个神经元的重量,从而完成该情况的学习过程。机器学习算法和技术用于识别人类风险问题的强度,它可以帮助患者采取安全措施,以挽救患者的生命。关键字:机器学习,云计算,心脏,反向传播,优化
国会法案规定成立肯尼亚机器人和人工智能协会;规定其职能和权力;促进肯尼亚共和国境内机器人和人工智能技术负责任和合乎道德的发展和应用;并用于相关目的。
随着可观的3D打印的出现,可以按需构建自定义制造的工具,并且添加了低成本的计算机,传感器和执行器,甚至可以构造自定义的机器人。当需要自主系统在新环境中操作或执行新任务时,此功能特别有用。例如,在城市搜救和救援中,通常很难预见如何获得访问权限,以及机器人完成其任务需要什么样的配置。同样,在敏捷制造中,为新任务重新装修自动化设备也消耗了大量资源。降低这一成本使制造商能够对市场变化更容易和有效地做出反应。在本文中,我们描述了用于自动设计和构建3D可打印工具的方法,这些工具可以由机器人用于响应新颖和不断变化的环境和任务。设计源自ILP系统学到的规格。响应机器人在紧急情况下越来越多地使用[5]。目前,他们主要被送入灾难现场,以进行初步监视,然后才进入危险的环境。通常,不可能事先知道机器人需要什么功能来完成其任务。例如,在灾难网站(例如倒塌的建筑物)中获得并在灾难网站上工作是有问题的,因为它们包含意外的障碍,损坏的基础设施,狭窄的空间等。因此,很难预见应该如何配置机器人。而不是使用3D打印,可以创建适合灾难网站独特情况的自定义工具,甚至可以制造完整的机器人[6]。
由于开发新化合物并确定其性能是昂贵且可能危险的,因此有必要开发一个模型来预测分子特性,而无需合成和实验测试。表示化合物的两种系统方法是通过分子结构的示意图和简化的分子输入线 - 进入系统(Smiles)。在这项研究中,这些表示分别用于训练两个神经网络模型,一个卷积神经网络(CNN)和一个经常性神经网络(RNN),以预测化合物的熔点。通过将化合物表示为结构的图像,CNN在拟合给定数据的拟合时不成功,似乎在给定数据的平均熔点附近保持恒定。然而,通过将化合物表示为系统生成的文本字符串,RNN成功地拟合了数据,总体趋势类似于实际趋势,平均绝对误差较低。但是,与结构图数据不同,用于RNN的微笑数据不包含方向信息。对于将来的研究,可能可以将两种表示形式结合起来,以达到更准确的预测模型。
摘要是由于最近对教育机器人技术的兴趣爆炸(ER)的爆炸,本文试图通过提出新的思考和探索相关概念的新方法来探讨这一领域。本文的贡献是四倍。首先,未来的读者可以将本文用作探索教育机器人技术的预期学习成果的参考点。从详尽的潜在学习收益列表中,我们提出了一组六个学习成果,可以为机器人活动设计的可行模型提供一个起点。第二,本文的目的是作为最近的ER平台的调查。在越来越多的可用机器人平台的驱动下,我们收集了最新的ER套件。我们还提出了一种对平台进行分类的新方法,该平台没有制造商的模糊年龄范围。所提出的类别(包括无代码,基本代码和高级代码)源自学生需要有效地使用它们的先验知识和编程技能。第三,随着ER竞赛的数量和比赛与ER平台的增加同时增加,该论文介绍并分析了最受欢迎的机器人事件。机器人竞赛鼓励参与者在促进特定学习成果的同时发展和展示自己的技能。本文旨在提供这些结构的概述并讨论其效率。最后,本文探讨了提出的ER竞争的教育方面及其与六个拟议的学习成果的相关性。这提出了一个主要特征组成竞争并实现其教学目标的问题。本文是第一项研究,将潜在的学习收益与我们的竞争与我们的最佳知识相关联。
老龄化社会的需求提出了在日常情况下机器人支持人类的希望。对于这些辅助机器人,与用户自然通信的功能能力至关重要。但是,当前对话系统中使用的最先进技术远远不令人满意。对于使用这些技术的机器人选择适当的动作,例如朝橱柜移动或在听到命令“带给我杯子”时,这不是一件容易的事。房屋内部可以有许多候选杯子,并且需要将其移交给用户的特定杯子根据情况而不同。例如,它可能与准备一顿饭菜或被清除的一顿饭有关。出于实际原因,服务机器人采用的大多数对话管理机构是言语(用户的话语)和非语言(例如,视觉,运动和背景)的信息。使用这些机制,当机器人处理发音时,情况和以前的经历都没有考虑到,因此它可能会执行用户没有想象的动议。在这项研究中,当机器人由于识别误差而执行不良运动时,我们将“运动失败”定义为发生的。这项研究的目的是减少失败的风险。专注于语言理解与运动之间的关系,我们不处理成功识别用户命令的情况,但执行的运动最终导致了不良的结论。考虑一个机器人成功识别命令“选择对象”的情况,但是机器人在尝试捡起时未能掌握指定的对象。
3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。 *相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。 缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。 在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。 我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。 我们在计算上筛选了跨越各种化学类别的12,000多种化合物。 对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。 值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。 其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。 患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。*相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。我们在计算上筛选了跨越各种化学类别的12,000多种化合物。对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。我们的工作证明了在与ML串联串联中使用表型筛选的使用可以有效地识别具有很少已知分子靶标的高度异质指示中个性化处理的治疗铅。关键字:胶质母细胞瘤,人工智能,药物发现,机器学习简介胶质母细胞瘤多形(GBM)是人类成年人中最常见和最具侵略性的原发性脑肿瘤,其特征是遗传驱动因素的实质异质性和肿瘤微环境1-3。在过去20年中,新诊断的GBM患者的护理标准包括手术,替莫唑胺(TMZ)和电离辐射(IR),延长了12个月至15个月患者的总体生存期4,5。大规模的基因组分析增强了我们对GBM分子生物学的理解,后者支持
○ Introduction to Particle Flow ○ Insights into the Neural Network Design ○ Metrics Overview: Building Blocks for Evaluation ○ Dataset - Jet-like Particle Gun ○ Results - Energy and Angular Resolution ○ Results - Reconstructed Mass ○ Results - Efficiency and Fake Rates ○ Results - Particle Identification 3.摘要和下一步
