摘要:电子工业和其他制造公司使用铝碳化硅(ALSIC)复合材料,因此,制造具有适当特性的ALSIC复合材料,适用于不同应用,对大多数行业至关重要。对不同性质进行相同样品测试的挑战仍然存在,因为进行的大多数测试都是破坏性的。因此,使用ANSYS有限元仿真软件来设计和分析平面标本。在样品上施加3 kN至21 kN之间的负载,因为它在通用拉伸测试机(UTTM)的工作极限内,而两端均已固定。本研究中使用的ALSIC复合材料的组成为63 vol%Al(356.2)和37 vol%SIC,结果表明,应力与应变成正比。对于所施加的不同拉伸载荷的应力与应变图中计算出的杨氏模量约为167 GPA。此外,随着载荷的增加,ALSIC复合材料的总变形增加。此外,在测试样品中心周围观察到材料的最高变形。这是在样品的实际测试中观察到的失败的代名词。关键字:ALSIC,拉伸负载,铝MMC,应力分析,变形,ANSYS
具有高电子迁移率的二维硒化铋 (Bi 2 O 2 Se) 在未来高性能、柔性电子和光电子器件中具有优势。然而,薄片 Bi 2 O 2 Se 的转移相当具有挑战性,限制了其机械性能的测量和在柔性器件中的应用探索。这里,开发了一种可靠有效的聚二甲基硅氧烷 (PDMS) 介导方法,可以将薄片 Bi 2 O 2 Se 薄片从生长基板转移到目标基板(如微机电系统基板)上。转移的薄片的高保真度源于 PDMS 薄膜的高粘附能和柔韧性。首次通过纳米压痕法实验获得了二维 Bi 2 O 2 Se 的机械性能。研究发现,少层 Bi 2 O 2 Se 具有 18–23 GPa 的二维半导体固有刚度,杨氏模量为 88.7 ± 14.4 GPa,与理论值一致。此外,少层 Bi 2 O 2 Se 可承受 3% 以上的高径向应变,表现出优异的柔韧性。二维 Bi 2 O 2 Se 的可靠转移方法和力学性能记录的开发共同填补了这种新兴材料力学性能理论预测与实验验证之间的空白,并将促进基于二维 Bi 2 O 2 Se 的柔性电子学和光电子学的发展。
本文介绍了一种用于内隔墙的船用夹层板的屈曲分析研究,该夹层板具有多层石墨烯纳米片 (GPL)/聚合物复合面板。芯层考虑了三种不同的形状:方形、蜂窝状和具有负毒比的凹入蜂窝状。假设面板由石墨烯纳米片 (GPL) 增强的聚合物基质组成。使用 Halpin-Tsai 的微机械方法确定顶层和底层的有效杨氏模量以及有效泊松比和质量密度的混合规则。基于新的五阶剪切变形理论对墙夹层板进行建模。采用汉密尔顿原理获得板运动的控制微分方程。所提出的公式和结果的准确性得到了验证,并通过与文献中可用的结果高度一致证明了其准确性。基于我们的结果,我们指出了蜂窝芯的蜂窝结构对船用内墙夹层板临界屈曲载荷的影响。此外,还利用 Galerkin 方法说明了厚度、纵横比、石墨烯纳米片重量分数和几何参数对临界屈曲载荷的影响。这项研究的成果可能有助于创造更高效的工程应用,特别是在海洋和船舶工业中。
摘要。众所周知,聚合物对老化很敏感;可以通过实验测试预测其寿命。本文展示了对聚甲基丙烯酸甲酯 (PMMA) 在太阳 (UV) 辐射和人造 (UV) 灯辐射、饮用水和海水中的长期性能的实验研究。从应变变化、拉伸断裂应变和杨氏模量方面分析了这种聚合物的性能。所得结果表明,吸收水的量与溶剂的性质无关,只有吸收动力学可能受介质中所含物质的调节。这似乎表明聚合物的塑化是一种可逆现象。此外,研究发现,拉伸强度和弹性模量随浸泡时间的增加而下降。与海水相比,饮用自来水在 36 个月后的吸收率导致聚甲基丙烯酸甲酯表现出非线性行为。 PMMA 暴露于人造 (UV) 灯辐射和太阳 (UV) 辐射,暴露时间相同,聚合物暴露于人造 (UV) 灯辐射时性能下降更严重。此外,经过 19 个月的暴露期后,结果表明人造 (UV) 灯辐射使该材料的行为从粘弹性变为粘塑性。关键词 . 聚甲基丙烯酸甲酯;老化;人造 (UV) 灯辐射和太阳 (UV) 辐射;海水;饮用水;质量增加。
将可拉伸电极或装置从一种基底转移到另一种薄弹性体上是一项艰巨的任务,因为弹性印章通常会在脱粘界面处产生巨大的应变,超出电极的拉伸极限。如果印章是刚性的,则不会发生这种情况。然而,刚性材料不能用作可拉伸电极的基底。在此,具有可调刚性的丝素蛋白(通过控制相对湿度,杨氏模量可以从 134 kPa 变为 1.84 GPa)用于将高度可拉伸的金属网络转移为高度可塑的表皮电极。丝素蛋白印章在剥离过程中被调节为刚性,然后在层压在湿润的人体皮肤上时作为基底变得柔软且高度可拉伸。此外,表皮电极在连接超过 10 天后没有表现出皮肤刺激或炎症。与商用 Ag-AgCl 凝胶电极相比,高柔顺性可降低界面阻抗,并在测量肌电信号时降低电极的噪声。在转移的不同阶段调整刚度的策略是一种通用方法,可以扩展到转移其他可拉伸电极和表皮电子器件、人机界面和软机器人。
杂质(Cl-) ppm 2.1 描述 Dow 硅胶封装材料(例如 DOWSIL™ ME-4131 透明封装材料)旨在满足微电子和光电子封装行业的关键标准,包括优异的附着力、高纯度、防潮性以及热稳定性和电稳定性。这些材料具有低杨氏模量,可以吸收封装内部 CTE 不匹配引起的应力,从而保护芯片和键合线。 如何使用 Dow 封装材料与市售设备和行业标准工艺兼容。封装材料可以进行分配、印刷或液体注塑成型。可以在标准强制空气对流烤箱或许多其他烤箱配置中完全固化以实现最终特性。 兼容性 某些材料、化学品、固化剂和增塑剂会抑制加成固化粘合剂的固化。其中最值得注意的是:有机锡和其他有机金属化合物、含有机锡催化剂的硅橡胶、硫、多硫化物、聚砜或其他含硫材料、不饱和烃增塑剂和一些焊剂残留物。如果基材或材料可能引起固化抑制,则建议进行小规模兼容性测试以确定在给定应用中的适用性。在可疑基材和固化凝胶之间的界面处存在液体或未固化产品表明不兼容和固化抑制。操作注意事项
摘要。本研究的目的是研究纯玉米淀粉(不含任何额外的增强成分)制成的生物塑料的机械和生物降解性能。制造程序如下:(1)用水稀释玉米淀粉,(2)在低于 100ºC 的温度下加热,使稀释的玉米淀粉、甘油和乙酸均匀混合,(3)成型工艺,(4)干燥工艺,得到固体生物塑料。本生物塑料具有良好的生物降解性能,在水中浸泡 2 周后很容易降解,这可以通过其重量减轻和表面出现真菌来证实。虽然与中等级别的标准生物塑料相比仍然较低,但仍获得了良好的机械性能。事实上,需要额外的增强成分(例如共聚物或添加剂)来改善机械性能。关键词:生物塑料,玉米淀粉,教育,拉伸强度,杨氏模量 1.引言 塑料是最常用的材料之一,主要用于食品包装材料(食品工业)甚至家用材料(非食品工业)[1-4]。塑料的优异性能(如重量轻、相对便宜、灵活和防水[3,4])使这种材料与日常生活密不可分。然而,全球塑料的使用面临着巨大的环境问题。塑料废弃物不断增加,造成大量塑料废弃物增加的问题[5-7]。塑料废弃物具有很难被环境中的微生物降解的特性,因为大多数塑料是由合成或半合成材料制成的,例如聚丙烯、聚苯乙烯和聚氯乙烯。事实上,在自然界中,用这些原料制备的塑料的降解需要很长时间,直到数百甚至数千年才能断裂碳链[1,8]。
本研究通过将有限元法 (ANSYS-FEM) 与参数模型降阶 (pMOR) 相结合,提出了一种新方法,用于执行参数研究并检查电力电子模块 (PEM) 耦合热机械模型的非线性材料行为。与广泛使用的顺序耦合方法相比,所考虑的耦合方法可以同时解决热模型和结构模型。与通常用于 pMOR 研究的恒定参数值不同,本研究使用 pMOR 方法参数化了导线材料的温度相关材料属性。本文考虑使用 pMOR 方法进行热机械分析的广义 2D 模型,参数化导线材料的温度相关热膨胀系数 (CTE) 和杨氏模量 (E),以探索它们对导线键合的影响。本文将矩阵插值法应用于 pMOR 研究,并使用 PRIMA(一种基于 Krylov 子空间的模型降阶 (MOR) 技术)进行局部模型降阶。已经开发出一种基于拉格朗日插值技术的新高效流程,用于在参数化降阶模型 (pROM) 中实现矩阵插值。降阶模型 (ROM) 的自由度 (DOF) 仅为 8,而全阶模型 (FOM) 的自由度为 50,602。pROM 提供了出色的解决方案,并将本案例的计算时间缩短了 84%。
摘要:硅阳极需要机械强度高且电化学稳定的聚合物粘合剂体系,以适应循环操作过程中经历的剧烈体积膨胀。在此,我们报告使用聚(丙烯酸)接枝苯乙烯-丁二烯橡胶(PAA- g- SBR)和 80% 部分中和的 Na-PAA 作为硅石墨阳极的粘合剂体系。PAA- g -SBR 接枝共聚物是通过将丙烯酸叔丁酯接枝到 SBR 上并用 H 3 PO 4 处理中间体合成的。发现 PAA- g -SBR/Na-PAA 粘合剂体系比 Na-PAA/SBR 体系具有更好的电化学性能。Na-PAA/PAA- g -SBR 体系在 130 次循环中具有稳定的 673 mAh g -1 容量保持率,而 Na-PAA/SBR 体系的容量保持率立即下降。 Na-PAA/PAA- g -SBR 体系还表现出更好的机械性能,与 Na-PAA/SBR 体系相比,杨氏模量值更低,失效应变更大。总体而言,这些发现表明,在下一代锂离子电池中,硅阳极应用是一种有前途且坚固的聚合物粘合剂体系。关键词:锂离子电池、硅电极、PAA-g-SBR 聚合物、丙烯酸叔丁酯、交流阻抗、电极粘附、储能应用■ 介绍
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。