图1:通过Elvim可视化的模拟结构的构象相空间。(a)投影中存在的不同种类,蓝色为aβ-40,红色的β-42和绿色的aβ-40突变体。(b)每个构象作为回旋半径的函数,其最显着的构象o周围显示每个区域。
Thanh Do,分析化学 驯服离子赛道上的构象异质性 大约 85% 的人类蛋白质组无法通过传统的小分子进行治疗。潜在的药物必须足够大且足够灵活,才能与大的凹槽状结合位点结合,或结合在两种蛋白质的界面上。环孢菌素是一类 N-甲基化的大环肽,它挑战了基于结构药物设计的传统观点。尽管环孢菌素 A (CycA) 自 1983 年以来彻底改变了器官移植领域,但针对不同靶点设计类似药物的尝试均未成功,这表明在 N-甲基化的作用和构象异质性在环孢菌素化学中的功能方面存在知识差距。环孢菌素由于 N-甲基化而具有灵活性,每次顺式/反式酰胺异构化都会改变分子的构象和物理化学性质。 CycA 可以与多个靶标(目前已知两个)结合,结合状态不同,这表明结合状态取决于靶标。先前的研究表明,结合状态(与已知靶标)在溶液中以次要构象异构体的形式存在。这表明环孢菌素可能通过反向诱导契合模型与其靶标结合,其中配体改变其构象以适应结合位点。因此,环孢菌素可以结合的靶标数量可能与其可以采用的可能构象异构体数量成正比。因此,为了充分了解环孢菌素的生化特性,我的实验室致力于准确探测 CycA 和 CycA 类似物的主要和次要构象异构体,使用多种技术,包括实验(X 射线/中子晶体学、离子迁移质谱、2D-NMR、离子光谱)和计算方法。我们发现了一个由二价离子调节的复杂构象网络和动力学。
DNA的电荷转移和自组装特性使其成为过去二十年来分子电子的标志。基于DNA的纳米电子应用和设备,使用DNA纳米结构具有可编程性能的快速有效的电荷传输机制。在此过程中,将DNA与无机底物集成至关重要。这种整合可能影响DNA的构象,从而改变电荷传输特性。因此,使用分子动力学模拟和第一原理计算与格林的功能方法结合使用,我们探索了AU(111)底物对DNA构象的影响,并分析其对电荷传输的影响。我们的结果表明,DNA序列引导其在AU底物上的分子构象,对工程师电荷传输特性至关重要。我们证明DNA可以在金底物上波动,随着时间的流逝,对各种不同的构象进行了采样。这些独特的构象之间的能量水平,分子轨道和DNA/AU接触原子的空间位置可能有所不同。取决于序列,在HOMO处,电荷传递在前十个构象之间的不同60倍。我们证明了核碱基的相对位置对于确定轨道之间的构象和耦合至关重要。我们预计这些结果可以扩展到其他无机表面,并为理解未来基于DNA的电子设备的DNA无机界面相互作用铺平了道路。
帕金森氏病(PD)和其他突触核心病的特征在于脑细胞中α-核蛋白(α -Syn)的聚集和沉积,形成不溶性内含物,例如Lewy身体(LBS)和Lewy Neurites(LNS)。α -syn的聚集是一个复杂的过程,涉及从其天然随机线圈到富含β-呈β-片的定义明确的二级结构,形成淀粉样蛋白样纤维。证据表明,在此转化过程中形成的α -Syn聚集体的中间物种是细胞死亡的原因。然而,与α -Syn聚集有关的分子事件及其与疾病发作和进展的关系尚未完全阐明。此外,在各种突触核力病中观察到的临床和病理异质性。液态液相分离(LLP)和凝结物的形成已被提议作为可能是α -Syn病理学的替代机制,并有助于在突触核生石病中看到的异质性。本综述着重于细胞环境在α -Syn构象重排中的作用,这可能导致病理学和存在不同毒性模式的不同α -Syn构象应变。讨论将包括细胞应激,异常LLP形成以及LLP在α -Syn病理学中的潜在作用。
从构象上看,刺突糖蛋白以同源三聚体的形式排列在病毒表面 [29]。当 RBM 被隐藏时,构象称为向下(受体不可接近)(见图 1C)。然而,同源三聚体是不对称的,因为它们不断进行结构重排(向上构象),以将病毒膜与宿主细胞膜融合 [13]。当两个 RBD 结构域被隐藏(受体不可接近)时,一个 RBD 结构域暴露(受体可接近),称为向上构象(见图 1D)。这是因为 S1 的 RBD 经历了铰链状运动 [32]。在 SARS-CoV 中,有两个铰链位点被鉴定(铰链 1 位点(354-361)和铰链 2 位点(552-563),它们负责上下切换
摘要:确定寡聚受体(OAS)的分子构象及其对分子填料的影响对于理解其所得聚合物太阳能电池(PSC)的光伏性能至关重要,但尚未得到很好的研究。在此,我们合成了两个二聚体受体材料,dibp3f-se和dibp3f-s,它们分别通过硒和噻吩桥接了Y6衍生物的两个段。理论仿真以及实验1D和2D NMR光谱研究证明,两个二聚体都表现出除S-或U形的相对词以外的O形构象。值得注意的是,这种O形构象可能受到独特的“构象锁定”机制的控制,这是由于其在二聚体内的两个末端组之间的分子内π -π相互作用加剧而产生的。基于Dibp3F-SE的PSC提供的最大效率为18.09%,表现优于基于DIBP3F-S的细胞(16.11%),并且在基于OA的PSC的最高效率中排名。这项工作展示了一种轻松获得OA构象的方法,并突出了二聚体受体对高性能PSC的潜力。
细化参数 闭合构象 开放构象 地图分辨率(掩蔽) 3.54Å 4.02Å 地图分辨率(未掩蔽) 3.55Å 4.03Å FSC(模型)(掩蔽)= 0.143 2.28Å 3.35Å 相关系数(掩蔽) 0.77 0.60 Ramachandran 允许值 100% 98.53% 表 2 PHENIX 40 中实空间细化的闭合和开放构象的冷冻电镜统计数据。447
摘要:分子复合物通常会对构象状态进行取样,从而引导它们发挥特定功能。这些状态可能难以通过传统的生物物理方法观察到,但可以使用各种不同的 NMR 自旋弛豫实验进行研究。然而,当这些应用集中在中高分子量蛋白质上时,快速弛豫信号会使其变得复杂,从而对光谱的灵敏度和分辨率产生负面影响。本文介绍了一种基于甲基 1 H CPMG 的实验,用于研究蛋白质机器的激发构象状态,该实验利用 TROSY 效应来增加信噪比。解决甲基 1 H 跃迁的多样性带来的复杂性,以生成一个强大的脉冲方案,该方案适用于 320 kDa 稳态蛋白 p97。人们越来越认识到,生物分子的运动特性对于功能至关重要,因此有必要关注动力学,以了解这些分子如何在健康和疾病中执行其许多不同的任务。 [1] 细胞的分子机器尤其如此,它们由不同的组件组成,这些组件的相对运动是经过精心设计的,可以进行正常的活动。原则上,溶液核磁共振波谱是研究这些动力学的有效方法,[2] 即使在总分子量接近 1 MDa 的系统中也是如此,只要能够在整个蛋白质复合物中用 13 CH 3 标记关键含甲基氨基酸获得高度氘化的粒子。[3] 在这种情况下,可以利用丰富的甲基内偶极相互作用网络 [4] 通过甲基-TROSY 效应生成高质量的 1 H– 13 C HMQC 数据集,其中 50% 的信号来自磁化转移途径,从而最大限度地减少弛豫损失。[3a] 定量运动的实验
网络,因为它们包含有关CVD如何影响CD的见解以及VCI。我们为此使用了先前构建的网络([11,12])。我们以它们的替代构象丰富了这三个簇,并利用棱镜来预测构象之间的相互作用。我们分析了这些相互作用,并将突变映射到可能与疾病相关的突变的那些构象中。我们发现,与趋化因子相关和应力响应相关的途径富集,可能与VCI中的BBB失调有关[11]。我们以前的工作还提出了压力相关途径的相关性及其在BBB中的影响。我们提出了推定的VCI相关相互作用,例如NFKBIA-RELA和蛋白酶体复合物及其效果。我们发现哪些突变构象的相互作用可能影响VCI和
图2:在选定情况下不同模型的性能比较以及不同模型之间结构违规的比较。(a)(b)在8D01_L/8DOY_L之间的TM得分和六个不同模型生成的100个构象之间的TM得分散点图。(c)(d)用8D01_L/8DOY_L从UFCONF覆盖了采样结构。青色:8D01_L实验结构;红色:8DOY_L实验结构;绿色:最接近8D01_L的采样结构;洋红色:采样结构最接近8doy_l。(e)(f)8i6o_b/8i6q_b和六个不同模型生成的100个构象之间的TM得分的散点图。(g)(h)用8i6o_b/8i6q_b从UFCONF中采样结构的覆盖。青色:8i6o_b实验结构;红色:8i6q_b实验结构;绿色:最接近8i6o_b的采样结构;洋红色:采样结构最接近8i6q_b。(i)所有产生的构象在20中定义的总违规损失; (J)所有产生的构象的碳氮(C-N)键损失(表明违反C-N键长度的违规); (k)所有产生的构象之间的残基数(表明残基之间的原子半径限制的侵犯)计数; (l)所有产生的构象中残留物中的冲突计数(表明残基中原子半径限制的侵犯);