核物理学的底层理论是由量子规范和物质结合的,它在根本上是重要的,但对于使用古典计算机进行仿真而言,这是巨大的挑战。量子计算为研究和理解核物理学提供了一种变革性的方法。随着量子处理器的快速扩展以及量子算法的进步,用于模拟量子量规场和核物理学的数字量子模拟方法已引起了很多关注。在这篇综述中,我们旨在总结使用量子计算机解决核物理学的最新信息。我们首先讨论量子计算语言中核物理学的表述。特别是,我们回顾了如何在量子计算机上映射和研究量子规范(Abelian和Abelian)及其与物质领域的耦合。然后,我们引入了相关的量子算法,以求解量子系统的静态性能和实时演变,并显示其在核物理学中的广泛问题中的应用,包括模拟晶格规范,求解核素和核结构,量子优势,用于在量子上散射量的量子量,量子量,量子量,量子eLd eld eld eld eldequibilibil dynamilics in nor-equibib and of y-un-equibib and of。最后,给出了未来工作的简短展望。
生物学的发展变得快速,尤其是遗传学,导致各种人类遗传数据实验的激增,作为用于分析遗传和重复以及法医活动的遗传信息的载体。在由碳水化合物,蛋白质或脂肪组成的细胞核或遗传学中,由磷含量高的物质组成。该物质在称为核素的细胞核中发现。然后将此名称转换为核酸。核酸由两种类型组成,即脱脂核酸(ADN)或脱氧核糖核酸核酸(DNA)和核糖核酸(ARN)或核糖核酸(RNA)。需要数字化遗传数据以促进研发。生物信息学是来自分子或生物医学生物学家研究人员实验室的实验数据,可促进使用计算技术处理人类遗传数据的方法。来自遗传学的数字数据可以以某种格式存储在数据库中。本研究旨在解释从生物样品中的人类遗传学数据数字化到数字数据的步骤。人类遗传数据的形式可用于生物学家使用可以读取FASTA格式文件的软件进行研究。Fasta是GenBank(蛋白质链数据库)中可用的几种类型的蛋白质链格式的链文件类型。来自遗传学的数字数据将用于生物学家的进一步研究,而无需采集生物样品。
3伊拉克库法大学药学学院,伊拉克库法大学4护理学院,摘要:脱氧核糖核酸(DNA)带有遗传性代码,这些代码由细胞翻译而成,可以同步核糖核酸(RNA)和多肽(RNA)和多肽,这些核酸(RNA)和多肽可以产生和表演VITARE VILATE和PERRACE VITAR。 双螺旋结构是Watson和Crick提出的DNA的最多研究的模型。 DNA作为遗传物质起作用的能力可以在细胞分裂过程中存储和进行,以使该信息加倍并传输到传入的一代。 DNA结构中的任何损害是癌症和其他疾病进展的基本直接原因。 DNA损伤的因素可以归类为外源性和内源性因素。 在本文文章中,我们重点介绍了有关DNA的结构,功能和临床意义的证据支持的信息。 1。 引言DNA的发现可以追溯到1869年,当时一位名叫Friedrich Miescher的瑞士生物化学家正在研究其化学成分来源的白细胞。 他从干净的手术敷料中获得了这些白细胞。 尽管他在细胞的所有细胞器和结构中都是原始的,但他很快将其范围缩小到细胞核,因为在用酸治疗后,出现了他称为“核素”的沉淀物。 大多数分子生物科学学生都会在实验室中进行该实验的某种版本,在这些实验室中,它们将DNA与细胞分离。 DNA的优雅结构,从核苷酸到染色体,是使其充当遗传信息的载体的原因。3伊拉克库法大学药学学院,伊拉克库法大学4护理学院,摘要:脱氧核糖核酸(DNA)带有遗传性代码,这些代码由细胞翻译而成,可以同步核糖核酸(RNA)和多肽(RNA)和多肽,这些核酸(RNA)和多肽可以产生和表演VITARE VILATE和PERRACE VITAR。双螺旋结构是Watson和Crick提出的DNA的最多研究的模型。DNA作为遗传物质起作用的能力可以在细胞分裂过程中存储和进行,以使该信息加倍并传输到传入的一代。DNA结构中的任何损害是癌症和其他疾病进展的基本直接原因。DNA损伤的因素可以归类为外源性和内源性因素。在本文文章中,我们重点介绍了有关DNA的结构,功能和临床意义的证据支持的信息。1。引言DNA的发现可以追溯到1869年,当时一位名叫Friedrich Miescher的瑞士生物化学家正在研究其化学成分来源的白细胞。他从干净的手术敷料中获得了这些白细胞。尽管他在细胞的所有细胞器和结构中都是原始的,但他很快将其范围缩小到细胞核,因为在用酸治疗后,出现了他称为“核素”的沉淀物。大多数分子生物科学学生都会在实验室中进行该实验的某种版本,在这些实验室中,它们将DNA与细胞分离。DNA的优雅结构,从核苷酸到染色体,是使其充当遗传信息的载体的原因。其他研究人员后来进一步表征了“核素”,并将其更名为核酸,因为研究表明该核酸由嘌呤和嘧啶碱,糖和磷酸盐组成。核酸,包括确定四个碱基以及它们含有脱氧核糖核酸的发现 - 因此被称为脱氧核糖核酸(DNA)。发现形成DNA分子主链结构的含氮碱基是对:鸟嘌呤(g)的胞嘧啶(C)和与胸腺氨酸(T)相同量的腺苷(A)(Minchin&Lodge,2019)。但是这种复杂性并非一无所获。沃森(Watson)和克里克(Crick)在1953年的论文中揭示了两个关键方面,这些方面构成了这种美丽的设计:以互补的方式配对核苷酸碱基(与胺的腺嘌呤,胰鸟嘌呤的鸟嘌呤)和双螺旋(Watson&Crick,1953年)。结构DNA结构是众所周知的,许多几何参数被认为是它们的特征,这些参数包括:螺旋弯曲,凹槽宽度,骨干和糖苷扭转角,糖冰瓶,螺旋桨扭曲,螺旋桨扭曲,滚动,滚动,倾斜,倾斜度,螺旋式上升和旋转和扭曲(Sagenger,Sagenger,1984年)。如图(1)所示,脱氧核糖核酸是聚合分子。它是由识别为核苷酸的单体单元的重复而形成的。核苷酸由5-碳糖(脱氧核糖),氮基碱和一个或多个磷酸基团组成。但是,在通过这些充当构建基块的核苷酸形成的DNA中,将三个磷酸基团相互引入。(Lamprecht等,2015)。在此过程中丢失了两种磷酸盐;因此,最后,DNA链每个核苷酸具有一个磷酸基团。
放射性分子束最近由于它们在原子,分子和核物理学之间的跨学科定位而获得了流行性[1-4]。分子含有重度放射性同位素,例如actinides的分子,提供了独特的研究机会,例如,持续搜索强电荷共轭(C)和均等(P)违规[5-8]或电子的电子偶极力矩[9]。在放射性离子束(肋骨)设施中,热腔靶和射频四极冷的束束中的分子形成感兴趣[10-12]。原始核素232 th,其半衰期为1的α衰变。4×10 10年,是宏观量量不需要肋骨设施的少数acttinide物种之一。有理由认为,thor的气相化学(以及铀)经常进行[13 - 17],这不仅是因为它需要比actacinide系列的更高度放射性元素的辐射保护效果明显少得多[18]。的兴趣也源于对核时钟的不断追求,该追求可以通过第229同位素的低能同构体状态实现[19-22]。分子包含此同位素被预测是测试CP侵略理论并寻找轴的理想实验室[23]。然而,对较大的or骨分子的高分辨率质谱研究很少,涉及气相阴离子的质谱研究也很少。
sars-cov-2 - 导致共同研究大流行病的病毒对人类健康的影响比其他呼吸道病毒更大,尽管其机制尚未完全理解。在最近的论文中,由Fabrizio d'Adda di Fagagna教授协调的研究人员首先证明SARS-COV-2会造成DNA损伤,并引起细胞中DNA损伤的改变。从机械上讲,研究人员发现SARS-COV-2表达能够劫持细胞核苷酸代谢的蛋白质。具体而言,已经发现病毒因子ORF6和NSP13分别通过蛋白酶体和自噬促进了DNA损伤响应检查点激酶1(CHK1)的降解。CHK1损失导致脱氧核苷酸三磷酸(DNTP)短缺,导致S期进展受损,DNA损伤,促炎性途径激活和细胞衰老。此外,研究小组证明,由于修复机制的损害,DNA断裂会累积。的确,作者证明了SARS-COV-2核素蛋白会损害结合蛋白53BP1的募集,并通过与53BP1竞争与损伤诱导的长期非编码RNA相关的DNA修复。值得注意的是,在体外细胞模型中首先获得的数据也被确认在SARS-COV-2感染的小鼠和COVID-19患者中的体内。总的来说,获得的发现表明SARS-COV-2既诱导DNA损伤并损害其修复,最终导致细胞衰老并扩散炎症。
重建更新世的冰川时间和程度对于理解古气候至关重要。虽然已在北美山脉的西部进行了广泛的研究,但晚更新世的冰川山脉,但科罗拉多州西部麋鹿范围的冰川历史仍在研究中,尤其是在东河水域(East River Watershed),这是一个强烈的科学焦点。在这里,我们使用宇宙基因核素暴露和深度 - 轮廓约会方法来确定东河流域冰川的时机。我们使用冰川建模来重建古射液仪,并量化过去的气候条件。我们的发现表明,东河冰川从其最大位置撤退了约17-18 ka,转移到13至15 ka之间的衰老位置,然后经历了更大的静修至13 ka左右的高海拔。冰川建模表明,与现代条件相比,与现代条件相比,温度降低约为17-18 ka的最大冰扩展可能是维持的。此外,温度降低约为-4.0°C的温度降低可能支持13-15 ka的冰位。这些结果提供了有关东河分水岭和更广阔的西麋鹿范围以及晚期更新世期间更广阔的西麋鹿范围以及古气候条件的见解,这可能有助于对东河流域关键区域进化的未来研究。
meCA -MRSA通过PCR靶向SA-442物种特异性片段和MECA基因(6,7)。我们使用PCR(8,9),与LUKF/ LUKS-PV基因的隶属关系和存在。我们通过使用磁盘扩散方法对抗生素抗性进行了表型检测,并根据欧洲抗菌敏感性测试版本14.0(10)提供的指南来解释结果。我们使用核素体微生物DNA隔离试剂盒提取DNA(Machery-Nagel,https://www.mn-net.com)。图书馆的准备和全基因组排序被外包给Eurofins(德国体育馆),其中使用了Illumina Novaseq6000技术(https:// www.illumina.com)。读取质量质量并通过使用Shovill v1.0.4(https://github.com/tseemann/shovill)来从头组装,我们通过使用quard v5.0.2(https://quast.sourceforge.net)评估了组装质量。We performed typing by using MLSTFinder v2.0.9 and spaTyper (Genomic Epidemiology Cen- ter, http://www.genomicepidemiology.org) and identified resistance and virulence genes by using ResFinder 4.1 and VirulenceFinder v2.0.3 (Genomic Epidemiology Center) (identity >95%) and confirmed resistance genes通过使用卡3.2.9。(https://card。mcmaster.ca)。我们通过使用bakta 1.9.1(https://bakta.computational.bio)来表征转座TN 554的遗传环境。要比较主体,我们使用了国家生物技术信息中心(NCBI)BLASTN工具(https:// bast。ncbi.nlm.nih.gov)。,我们通过使用Roary以前出版的繁殖(6)(Roary v3.13.0,Gubbins v2.4.1和SNP-Dist v0.7.0; https:/https://github.com)在所有CC398 PVL-Posistive rypseques tripseq:
使用博物馆标本用于微生物进化生态学研究的研究仍然是一个未充分利用的研究维度,具有重要潜力。尽管存在这种潜力,但在方法论和分析中仍然存在广泛采用此类研究的博物馆标本的障碍。在这里,我们假设样本类型(博物馆或新鲜)和测序策略(中等深度shot弹枪元基因组或16S rRNA基因)之间的分类预测和相关多样性将存在显着差异。与博物馆和新鲜样品中的16S rRNA基因测序相比,shot弹枪宏基因组学的预测多样性较高,博物馆标本中这种差异更大。广泛证实了这些假设,新鲜样品中发现的最高多样性是使用REP200参考的shot弹枪测序,其中包括病毒和微核素,然后是WOL参考数据库。在博物馆特殊的情况下,测序策略之间的社区多样性指标也有很大差异,而alpha-doverity Ace差异显着大于对新样本进行的相同比较。beta多样性结果的变化更大,并且依赖于所使用的参考数据库。综上所述,这些发现存在多样性结果的重要差异,并迅速考虑了未来的实验和下游分析,旨在纳入博物馆标本中的微生物组数据集。
凋亡是细胞死亡过程,仅当在不再允许细胞恢复的水平积累更多的压力时,才成为神经元的最终溶液。在中枢神经系统的发展过程中,神经发生通常伴随着神经元丧失,这是建造功能指挥中心所必需的; However, what happens in many neurodegenerative diseases is a very different process: in fact, a significant increase in neuronal loss due to the set of various stress occurs such as: increase in the number of reactive oxygen species (ROS), excitotoxicity, synaptic dysfunction, altered protein degradation systems, stress of the endoplasmic lattice (ER), damage to the DNA, mitochondrial功能障碍。炎症并恢复到最终导致神经元本身死亡的细胞周期。在这项研究中,已经提出了主要神经退行性疾病中涉及的各种程序性细胞死亡的机制。<关于阿尔茨海默氏病涉及的致病蛋白的潜水是tau和β-淀粉样蛋白:在致病条件下tau在神经元中脱离微管时会诱发胁迫,并损害神经元的整个细胞骨骼。通过这种方式,这些蛋白质倾向于形成聚集体和NFT(神经纤维缠结),这些蛋白质作为系统缺陷而无法降解自噬或蛋白酶体。分析帕金森氏病患者的大脑,主要的致病蛋白将是α-苏核素,因为它的聚集体形成了路易体的核。相反,相反,Aβ以不同的方式提交了神经元:已经提出,寡聚体Aβ暴露延长的神经元可以导致谷氨酸在突触裂纹中积累,并稳定NMDA受体。α-苏核素可以诱导神经元死亡的机制尚不清楚。然而,他在多巴胺能神经元中的表达与线粒体功能障碍和氧化应激有关。亨廷顿氏病的特征是丧失条纹体和胆碱能神经元的GABA中型中型神经元。突变的亨廷汀蛋白在细胞内水平和细胞周期中涉及的蛋白质或细胞结构中的蛋白质能够共同生长以形成夹杂物。在细胞死亡的分子机制方面,已经提出蛋白质改变可能引起:聚集体的形成;基本基因(例如BDNF)和染色质修饰的转录改变;损坏蛋白酶体;线粒体功能障碍;轴突运输中突触可塑性和缺陷改变。ALS的病理迹象是其细胞质包含,主要由DNA结合蛋白43(TDP-43)组成,以及其他蛋白质(包括参与核总质质转运的蛋白质)。TDP-43的纳入也是前期痴呆,阿尔茨海默氏病和路易体痴呆的主要病理特征之一。这项研究在主要神经退行性疾病的复杂路径中面临编程的细胞死亡。在病理条件下,突变的TDP-43蛋白转移到细胞质并形成聚集体,其毒性与线粒体功能障碍与ROS的产生和核总质质转运的损害相关。当前对神经退行性疾病中这种死亡表现出的机制的理解与包括Tau,β-氨基类,Alfa-Sinuclein,Huntinth和TDP-43在内的主要致病蛋白相关,但似乎不可避免地可以进行进一步的研究。
DENV血清型4是最不同的,其次是DENV血清型3,而DENV血清型1和2彼此之间更紧密相关。所有血清型感染都具有长期免疫力,但对其他三种的过渡性免疫有限。根据流行病学研究,具有各种血清型的继发性感染与更严重的登革热有关。10登革热病毒的生理涉及3种结构蛋白C,PRM和E,它们会翻译和翻译后形成完整的感染性病毒颗粒,也称为病毒体。为了构建核蛋白质,C(衣壳)蛋白围绕病毒基因组RNA。该核素被包裹在包含病毒前膜蛋白的脂质双层中,也称为PRM蛋白和包膜蛋白,即,电子蛋白。7种非结构蛋白(NS1/NS2A/NS2B/NS3/NS4A/NS4B/NS5)在受感染的细胞中表达,对于病毒复制,病毒体装配和免疫逃避是必需的。非结构蛋白通常存在于细胞质中,它们提供了有助于病毒RNA产生的复制产物。登革热病毒NS1是内质网中连接的亲水膜均匀二聚体。因为NS1蛋白的突变会影响RNA的产生,研究NS1蛋白的三维(3D)结构和病毒NS1 - NS2A蛋白催化结构域可以帮助理解NS1亚基在病毒病原体中的形状和参与。ns2b充当伴侣,帮助NS3分量折叠成其活性形状。登革热病毒NS3和NS5它还参与底物 - 酶相互作用以及膜附着。