脑电图 (EEG) 信号的识别严重影响非侵入式脑机接口 (BCI) 的效率。虽然基于深度学习 (DL) 的 EEG 解码器的最新进展提供了改进的性能,但几何学习 (GL) 的发展因其在解码噪声 EEG 数据方面提供出色的鲁棒性而备受关注。然而,缺乏关于深度神经网络 (DNN) 和几何学习在 EEG 解码中的合并使用的研究。我们在此提出了一种流形注意力网络 (mAtt),这是一种基于几何深度学习 (GDL) 的新型模型,具有流形注意力机制,可在黎曼对称正定 (SPD) 流形上完全表征 EEG 数据的时空表示。在时间同步和异步 EEG 数据集上对所提出的 MAtt 的评估表明,它优于其他领先的 DL 方法用于一般 EEG 解码。此外,模型解释分析揭示了 MAtt 捕捉信息性 EEG 特征和处理大脑动态非平稳性的能力。
我们证明玻色子和费米子高斯态(也称为“压缩相干态”)可用其线性复结构 J 来唯一表征,该结构是经典相空间上的线性映射。这扩展了基于协方差矩阵的传统高斯方法,并提供了一个同时处理玻色子和费米子的统一框架。纯高斯态可以用兼容凯勒结构的三重 ( G , Ω , J ) 来识别,由正定度量 G、辛形式 Ω 和线性复结构 J 组成,其中 J 2 = − 1 。混合高斯态也可以用这样的三重结构来识别,但 J 2 ̸ = − 1 。我们应用这些方法来展示如何将涉及高斯态的计算简化为这些对象的代数运算,从而得到许多已知和一些未知的身份。我们将这些方法应用于研究(A)纠缠和复杂性、(B)稳定系统的动力学、(C)驱动系统的动力学。由此,我们编制了一份全面的数学结构和公式列表,以并排比较玻色子和费米子高斯态。
摘要:支持向量机 (SVM) 和核方法 (KM) 被广泛用于数据学习中的分类和回归。核是将数据映射到更高(可能是无限)维度的正定函数。通常,SVM 1 将核方法实现为子程序,将非线性数据映射到更高维度,使其变为线性可分。SVM 在此特征空间中的数据点类别之间绘制线性决策边界。本文从经典机器学习的角度回顾了核和核方法及其在量子机器学习中的可能实现。我们从核的基础开始,包括希尔伯特空间和再生核希尔伯特空间、Mercer 条件,并证明了三个广泛使用的核满足 Mercer 条件的有效性。我们回顾了两种不同的量子机器学习方法,即参数化量子电路和基于核的训练,并讨论了其中一种相对于另一种的潜在优势。本文可以帮助读者开始了解核理论和量子机器学习。
我们介绍了 Geomstats,这是一个开源 Python 包,用于对非线性流形(例如双曲空间、对称正定矩阵空间、变换李群等)进行计算和统计。我们提供面向对象且经过大量单元测试的实现。流形配备了黎曼度量系列以及相关的指数和对数映射、测地线和并行传输。统计和学习算法提供了对流形进行估计、聚类和降维的方法。所有相关操作都被矢量化以用于批量计算,并为不同的执行后端提供支持——即 NumPy、PyTorch 和 TensorFlow。本文介绍了该软件包,将其与相关库进行了比较,并提供了相关的代码示例。我们表明,Geomstats 提供了可靠的构建块,既可以促进微分几何和统计学的研究,又可以使黎曼几何在机器学习应用中的使用更加民主化。源代码可根据 MIT 许可证在 geomstats.ai 上免费获取。
摘要。不同的几何方法,以对称正定定义(SPD)矩阵的形式分析和处理数据的几何方法对包括计算机视觉,医学成像和机器学习在内的众多领域具有显着的成功应用。此类应用的主要几何范式由与高度和高维度相关的光谱计算相关的一些riemannian几何形状组成。我们提供了一个可扩展的几何框架的途径,以基于半概括的希尔伯特和汤普森的几何形状,基于极端概括的特征值的有效组合,以分析和处理SPD值的数据。我们详细探讨了基于汤普森几何形状的特定地理空间结构,并建立了与该结构相关的几个属性。此外,我们基于这种几何形状来定义SPD矩阵的新型迭代平均值,并证明了它的存在和独特性,用于给定的有限点集合。最后,我们指出并证明了许多所满足此均值的理想属性。
生物网络通常用于生物医学和医疗保健领域,以有效地模拟复杂生物系统的结构以及连接生物实体的相互作用。然而,由于其高维和低样本量的特点,直接将深度学习模型应用于生物网络通常会面临严重的过拟合。在本文中,我们提出了一种基于 Mixup 的数据增强技术 R-Mixup,它适合生物网络邻接矩阵的对称正定 (SPD) 性质,并优化了训练效率。R-Mixup 中的插值过程利用了黎曼流形中的对数欧几里德距离度量,有效地解决了 vanilla Mixup 的膨胀效应和任意错误的标签问题。我们用五个真实的生物网络数据集在回归和分类任务上证明了 R-Mixup 的有效性。此外,我们推导出一个常被忽视的识别生物网络 SPD 矩阵的必要条件,并实证研究了其对模型性能的影响。代码实现可以在附录E中找到。
因果关系这一主题最近在量子信息研究中引起了广泛关注。这项工作研究了过程矩阵之间的单次判别问题,这是一种定义因果结构的通用方法。我们提供了正确区分的最佳概率的精确表达式。此外,我们提出了一种使用凸锥结构理论实现此表达式的替代方法。我们还将判别任务表示为半正定规划。因此,我们创建了 SDP 来计算过程矩阵之间的距离,并根据迹范数对其进行量化。作为一个有价值的副产品,该程序找到了判别任务的最佳实现。我们还发现了两类可以完美区分的过程矩阵。然而,我们的主要结果是考虑与量子梳相对应的过程矩阵的判别任务。我们研究了在判别任务期间应使用哪种策略(自适应或非信号)。我们证明了无论选择哪种策略,区分两个过程矩阵为量子梳的概率都是相同的。
摘要 — 机器学习界对解决对称正定 (SPD) 流形上的域自适应问题表现出越来越浓厚的兴趣。这种兴趣主要源于脑信号生成的神经成像数据的复杂性,这些数据通常会在记录会话期间表现出数据分布的变化。这些神经成像数据以信号协方差矩阵表示,具有对称性和正定性的数学性质。然而,应用传统的域自适应方法具有挑战性,因为这些数学性质在对协方差矩阵进行运算时可能会被破坏。在本研究中,我们介绍了一种基于几何深度学习的新型方法,该方法利用 SPD 流形上的最佳传输来管理源域和目标域之间边缘分布和条件分布的差异。我们在三个跨会话脑机接口场景中评估了该方法的有效性,并提供了可视化结果以获得进一步的见解。该研究的 GitHub 存储库可通过 https://github.com/GeometricBCI/Deep-Optimal-Transport-for-Domain-Adaptation-on-SPD-Manifolds 访问。
多元正态分布n(m,c)具有单型号的“钟形”密度,其中钟的顶部(模态值)对应于分布均值,m。分布n(m,c)由其平均值m∈R唯一决定,其对称和正定的协方差矩阵c∈Rn×n。协方差(正定定义)矩阵具有吸引人的几何解释:可以用(超 - )椭圆形{x∈Rn |唯一地识别它们。 X T C -1 x = 1},如图1。椭圆形是分布相等密度的表面。椭圆形的主轴对应于C的特征向量,平方轴的长度与特征值相对应。特征成分由C = B(d)2 B t表示(请参阅Sect。0.1)。如果d =σi,其中σ∈R> 0,我表示身份矩阵,c =σ2i,椭球是各向同性的(图1,左)。如果b = i,则C = D 2是对角线矩阵,椭圆形是平行于轴平行的(中间)。在由B的列给出的坐标系中,分布n(0,c)总是不相关的。
生物网络通常用于生物医学和健康保健领域,以有效地模拟复杂的生物系统与与生物实体联系的相互作用的结构。但是,由于它们具有高维度和低样本量的特征,直接在生物网络上应用深度学习模型通常会面临严重的过度拟合。在这项工作中,我们提出了R-Mixup,这是一种基于混合的数据增强技术,该技术适合具有优化训练效率的生物网络的邻接矩阵的符号正定(SPD)属性。R-Mixup中的相互关系过程利用了Riemannian歧管的对数 - 欧几里得距离指标,从而有效地解决了香草混合物的肿胀效果和任意错误的标签问题。我们通过五个现实世界的生物网络数据集在回归和分类任务上演示了R-Mixup的有效性。此外,我们得出了一个普遍忽略的必要条件,用于识别生物网络的SPD矩阵,并密切研究其对模型性能的影响。代码实现可以在附录E中找到。