多元正态分布n(m,c)具有单型号的“钟形”密度,其中钟的顶部(模态值)对应于分布均值,m。分布n(m,c)由其平均值m∈R唯一决定,其对称和正定的协方差矩阵c∈Rn×n。协方差(正定定义)矩阵具有吸引人的几何解释:可以用(超 - )椭圆形{x∈Rn |唯一地识别它们。 X T C -1 x = 1},如图1。椭圆形是分布相等密度的表面。椭圆形的主轴对应于C的特征向量,平方轴的长度与特征值相对应。特征成分由C = B(d)2 B t表示(请参阅Sect。0.1)。如果d =σi,其中σ∈R> 0,我表示身份矩阵,c =σ2i,椭球是各向同性的(图1,左)。如果b = i,则C = D 2是对角线矩阵,椭圆形是平行于轴平行的(中间)。在由B的列给出的坐标系中,分布n(0,c)总是不相关的。
主要关键词