本文讨论了在认可计量实验室的活动中引入测量不确定度概念的热点问题。分析了规范和方法文件,这些文件规范了测量结果质量评估、建立计量可追溯性、测量结果相互认可、校准、测试。指出了在俄罗斯应用 GUM 手册所面临的困难和问题,包括关于概念设备,不确定度概念的术语和定义与经典测量理论的对应关系。考虑了劳动力市场对计量学家职业的要求。关键词:计量、测量不确定度、误差、校准、测试、实验室认可。
森林地上生物量 (AGB)。传统上,树高由测高仪测量,该测高仪广泛用于验证地面激光扫描仪 (TLS) 和机载激光雷达 (ALS)。然而,与 TLS 和 ALS 相比,测高仪的测量结果存在很大的不确定性。与高度测量相关的误差会传递到 AGB 估计模型中,并最终降低估计的 AGB 和随后的碳储量的准确性。在本文中,我们测试了在热带低地雨林中使用测高仪、TLS 和 ALS 来测量高度 (H) 和胸高 (DBH),并以机载激光雷达为基准,在高度测量中具有高精度和保真度。结果表明,当使用机载 LiDAR 作为基准来验证实地测量和 TLS 时,测高仪测量的实地高度低估了树高,均方根误差 (RMSE) 为 3.11,而 TLS 低估了树高,RMSE 为 1.61。由于高度测量结果存在显著差异,AGB 和碳储量也存在显著差异,实地测量值为 146.33 和 68.77 Mg,TLS 值为 170.86 和 80.31 Mg,机载 LiDAR 值为 179.85 和 84.53 Mg。以机载激光雷达测量结果为最准确,实地测量的地上生物量和碳储量占机载激光雷达总地上生物量和碳储量估计值的85.55%。同时,TLS测量结果反映了以机载激光雷达数据为基准的95.02%的地上生物量和碳储量。结果表明,与小树相比,大树的高度测量存在巨大的不确定性,差异显著。结论是,地上生物量和碳储量对各种测量树高方法得出的高度测量误差很敏感,树木的大小也是如此。
校准机构应为所有已开展的工作提供校准报告。请参阅 ISO 17025.5.10.2 和 5.10.4。此校准报告应包括:• 机构名称和地址• 报告的唯一标识• 被校准项目的描述• 具体方法的标识• 测量结果(包括校正图表和表格)• 已实现的测量不确定度声明和适用的任何检测限制• 已分包给其他机构的任何测试(如果适用)的指示• 接受报告和报告所依据的测试工作责任的机构授权成员的印刷详细信息、签名和职称• 测量结果可追溯到国家标准的方法,包括测试设备的标识• 执行校准的环境条件。
本文讨论了在认可计量实验室的活动中引入测量不确定度概念的热点问题。分析了规范和方法文件,这些文件规范了测量结果质量评估、建立计量可追溯性、测量结果相互认可、校准、测试。指出了在俄罗斯应用 GUM 手册时遇到的困难和问题,包括与概念设备相关的问题、不确定度概念的术语和定义与经典测量理论的对应关系。考虑了劳动力市场对计量职业的要求。关键词:计量、测量不确定度、误差、校准、测试、实验室认可。
摘要:本文介绍了一种采用 65 nm 技术制造的 26 Gb/s CMOS 光接收器。它由三电感跨阻放大器 (TIA)、直流 (DC) 偏移消除电路、3 级 gm-TIA 可变增益放大器 (VGA) 以及内置均衡技术的无参考时钟和数据恢复 (CDR) 电路组成。TIA/VGA 前端测量结果显示 72 dBΩ 跨阻增益、20.4 GHz −3 dB 带宽和 12 dB DC 增益调谐范围。VGA 电阻网络的测量也证明了其有效克服电压和温度变化的能力。CDR 采用全速率拓扑,具有 12 dB 嵌入式均衡调谐范围。该芯片组的光学测量结果显示,在 2 15 −1 PRBS 输入下,26 Gb/s 速率下的 BER 为 10 −12,输入灵敏度为 −7.3 dBm。使用 10 dB @ 13 GHz 衰减器的测量结果也证明了增益调谐功能和内置均衡的有效性。整个系统功耗为 140 mW,采用 1/1.2 V 电源供电。
并非总是会发生鲍勃系统的状态恰好| ψ⟩。例如,当爱丽丝获得结果2时,他的量子将变为状态α| 0⟩-β| 1⟩,他将不得不在其系统上执行一秒钟的操作才能恢复| ψ⟩。在这种情况下,他将不得不夸大| 1⟩,在计算基础上应用O 2代表的统一。对于B),您必须找到所有其他操作{O K} k。当然,鲍勃只知道要采用什么操作,因为他知道国家|他的Qubits的b k⟩,他知道这是因为爱丽丝告诉他她的测量结果。如果爱丽丝没有告诉他结果怎么办?在那种情况下,鲍勃将不得不尝试猜测他的贵族状态。他知道所有测量结果都是同样可能的,对于每个测量结果,他都有不同的状态。幸运的是,在量子力学中,我们有一种用密度矩阵描述纯状态的概率混合物的方法。鲍勃在爱丽丝的衡量标准之后的状态是ρ= p k 1 4 | b k⟩⟨b k | 。在第c部分中,您必须证明,当鲍勃不知道测量结果时,他对自己的状态是什么或如何恢复| ψ⟩,即ρ= 1 b。这告诉我们,只有在爱丽丝使用(可能是经典的)通信渠道与鲍勃(她的测量结果)共享一些信息时,量子传送协议只能起作用。请注意,当爱丽丝和鲍勃传送一个Qubit的状态时,他们会失去纠缠,因此无法重复传送其他任何内容的协议。2)。令人印象深刻的是,量子传送带来了成本。到目前为止,我们只看到了如何传送纯状态。一个人可能想知道,如果国家爱丽丝试图与她无法控制的参考系统R纠缠在一起会发生什么。鲍勃一侧的最终状态会以相同的方式与R纠缠在一起吗?答案是,是的,是的(图在d)和e)中被要求更正式地证明这一点。您可以从考虑每个混合状态都可以在其本egenbasis中扩展,ρs= p i p i |我⟩⟨i | S,带有| i⟩=αI| 0⟩ +βI| 0⟩。检查该协议是否适用于这样的状态。,例如,您可以在爱丽丝(Alice)以铃铛为基础测量她的两个量子位并获得结果2。请记住,整个系统的最终状态由