摘要 类风湿性关节炎 (RA) 是一种慢性免疫介导炎症性疾病,如果不及早进行适当治疗,可能会导致进行性残疾。在过去的 20 年里,对该疾病发病机制的认识不断提高,已经开发出多种针对发病过程关键要素的药物,这些药物现在成为甲氨蝶呤 (MTX) 等传统药物一线治疗失败后的首选治疗方案。这类靶向药物包括抗细胞因子或细胞靶向生物制剂,最近还包括 Janus 激酶抑制剂 (JAKis)。由于目前缺乏特定的生物标志物来指导真正的精准医疗背景下的治疗选择,MTX 失败后的第一个靶向药物的选择取决于治疗成本(尤其是在生物仿制药上市后)以及患者的临床特征(年龄、性别、合并症和依从性)和疾病(自身抗体和全身或关节外表现的存在与否),这可能会影响现有产品的有效性和安全性。该观点侧重于 RA 个性化治疗方法背后的决策过程,并将分析文献中支持选择个别产品的证据,特别是生物药物和 JAKi 之间的差异化选择。
简介:BCR :: ABL1激酶结构域(KD)中突变的出现损害了伊马替尼麦甲酸酯(IM)结合能力,从而有助于IM抗性。鉴定这些突变对于慢性髓样白血病(CML)患者的治疗决策和精确医学很重要。我们的研究旨在确定具有IM耐药性的CML患者BCR :: ABL1 KD突变的频率。材料和方法:23例CML患者(26.7%)显示具有IM耐药性的BCR:ABL1 KD突变。结果:总共确定了Y253H,E255K,T267A,A287T,M290R,M290R,F3111,T3151,F317L,F359V,F359V,F3591,F3591,F359C,F357T,K357T,A3999T,E459,总共确定了14种不同类型的突变。 M290R和K357T。我们还发现了密码子389和401的两个无声突变。结论:建议进行突变分析以识别有疾病进展风险的患者。因此,对这种突变的早期检测可能会允许及时治疗干预以防止或克服抗药性。
图1。神经元中VPS13的丧失导致年龄增强运动缺陷。(a)果蝇中组织特异性敲低的示意图。使用泛神经元驱动器elav-gal4进行神经元(红色)的特定敲低(红色)。使用Pan-Muscle驱动器24B-GAL4进行肌肉(蓝色)的特定敲低(蓝色)。(b)在无处不在(ACT-GAL4),神经元特异性(ELAV-GAL4)或肌肉特异性(24B-GAL4)敲低的(b)表现为成年的百分比,与基因型匹配的对照(GAL4具有UAS-luciferase(Luc)(Luc)相比,VPS13的肌肉特异性(24B-GAL4)敲低。 n≥50个基因型分析的动物。 (c)示意图描绘了成人飞行攀岩测定法,示例为100%攀爬(左)和50%攀爬(右)。 在实验中,分析了N〜10的组。 (D-E)在3-4天旧的神经元特异性(D)或肌肉特异性(E)VPS13敲低苍蝇和配对对照中进行攀爬测定。 在每个条上显示的总n。 对于每种基因型,从三个独立的遗传杂交中收集苍蝇。各个数据点代表了这些生物学重复的平均攀爬。 (F-G)控制(圆形符号)和特定于神经元特异性的敲低,红色(F)或特定于肌肉的敲低,蓝色(G)的VPS13(正方形符号)的攀爬测定法。 elav> luc n = 79; elav> vps13(i)n = 68; 24b> luc n = 75; 24b> vps13(i)n = 70。 生物学三份分析的所有样品。 图显示平均值±S.D。 使用未配对的两尾t检验计算出的显着性。 * p <0.05; ** p <0.01; NS =不重要。(b)表现为成年的百分比,与基因型匹配的对照(GAL4具有UAS-luciferase(Luc)(Luc)相比,VPS13的肌肉特异性(24B-GAL4)敲低。n≥50个基因型分析的动物。(c)示意图描绘了成人飞行攀岩测定法,示例为100%攀爬(左)和50%攀爬(右)。在实验中,分析了N〜10的组。(D-E)在3-4天旧的神经元特异性(D)或肌肉特异性(E)VPS13敲低苍蝇和配对对照中进行攀爬测定。在每个条上显示的总n。对于每种基因型,从三个独立的遗传杂交中收集苍蝇。各个数据点代表了这些生物学重复的平均攀爬。(F-G)控制(圆形符号)和特定于神经元特异性的敲低,红色(F)或特定于肌肉的敲低,蓝色(G)的VPS13(正方形符号)的攀爬测定法。elav> luc n = 79; elav> vps13(i)n = 68; 24b> luc n = 75; 24b> vps13(i)n = 70。生物学三份分析的所有样品。图显示平均值±S.D。使用未配对的两尾t检验计算出的显着性。* p <0.05; ** p <0.01; NS =不重要。
如果雇员和/或依赖的下降以招募健康计划,请在入学中心输入该信息。如果使用纸质注册过程,则必须签署豁免。请注意,对于1至50人的社区评级组,所有合格的豁免都必须伴随身份证的影印本或福利解释(EOB)以验证当前的覆盖范围。请在文件中保留签名的豁免。如果您需要其他副本,则可以在网站上提供premera.com/wa/employer/resources/forms。
概述 Opzelura 是一种 Janus 激酶 (JAK) 抑制剂,适用于局部短期和非持续治疗轻度至中度特应性皮炎,适用于年龄 ≥ 12 岁、病情无法通过局部处方疗法充分控制或不建议使用局部处方疗法的患者。 政策声明 本政策涉及 Opzelura 的使用。建议事先授权 Opzelura 的药房福利覆盖范围。建议对符合所提供诊断的标准和初步/延长批准中的覆盖条件的人进行批准。不建议批准的疾病按照建议的授权标准列出。未在本政策中列出的用途的请求将根据具体情况审查其疗效证据和医疗必要性。由于评估和诊断接受 Opzelura 治疗的患者需要专业技能以及监测不良事件和长期疗效,初步批准要求 Opzelura 由专门研究所治疗疾病的医生开具处方或与其协商。所有初始治疗的批准均在下述初始批准期限内提供;如果允许重新授权,则需要对治疗做出反应才能继续治疗,除非下文另有说明。推荐的授权标准建议满足以下标准的人接受 Opzelura 的治疗:1. 白癜风。如果患者满足以下所有条件(A、B、C、D、E 和 F),则批准:
© 作者 2024。开放存取本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecom-mons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
1纪念斯隆·凯特林(Sloan Kettering)癌症中心,美国纽约,美国; 2梅奥诊所 - 美国佛罗里达州杰克逊维尔杰克逊维尔; 3意大利米兰的助理大都会大都会尼古尔达; 4 Weill Cornell Medicine,美国纽约,美国; 5UniveritàVita-Salute San Raffaele,意大利米兰; 6意大利米兰的Irccs Ospedale San Raffaele; 7德国杜塞尔多夫Arensia探索医学研究所; 8阿尔弗雷德医院和莫纳什大学,澳大利亚维克,墨尔本; 9澳大利亚新南威尔士州康科德大学悉尼分校的Concord遣返综合医院;美国马萨诸塞州波士顿的达纳 - 法伯癌研究所10; 11乌尔姆大学,德国乌尔姆; 12 Beigene(Shanghai)Co,Ltd,中国上海; 13美国加利福尼亚州圣马特奥市Beigene USA,Inc;皇家墨尔本医院和墨尔本大学,澳大利亚维克,墨尔本大学的彼得·麦卡勒姆癌症中心14号
2015 年,FDA 批准使用一种新型酪氨酸激酶抑制剂阿来替尼 (ALB),用于治疗颅外尖点突变的间变性淋巴瘤激酶胞内域。阿来替尼于 2017 年 8 月成为首个获批的一线药物。其药理特性与前代药物不同,需要开展新的研究来确定其潜在的药理和临床意义。本综述对阿来替尼的药代动力学及其对肝胆代谢的影响进行了批判性分析。我们介绍了当前的临床数据和可用于进一步临床研究的新知识。通过这项研究,我们希望找到可以进一步延长间变性淋巴瘤激酶 (ALK) 酪氨酸激酶阿来替尼疗效的观点。酪氨酸激酶与血小板生长配体的受体结合,是一类在驱动特发性癌症的各种分子变异的发病机制中起关键作用的酶。这些激酶的不同特性使它们目前成为设计新型癌症抑制剂的优先靶标。其有效性的一个明显例子是,在患有内含子重排或 ALK 易位的肿瘤患者中取得了里程碑式的疗效。这些肿瘤大多发生在患有腺癌组织学的非小细胞肺癌患者中,而不是非吸烟型患者。此外,通过有针对性的二线干预措施开发出不同的变构耐药机制,最终显著提高了患者的生存率。
结果 患者 1 为 60 岁男性,患有 BRAF D594N 突变 NSCLC,在接受一线和二线化疗后病情进展,对厄洛替尼治疗后病情完全缓解。患者 2 为 60 岁女性,患有 BRAF D594G 突变 NSCLC,在接受一线化学免疫疗法后病情进展,对厄洛替尼治疗后病情部分缓解。在 BRAF 3 类突变和 EGFR 突变细胞系中观察到厄洛替尼治疗后基线磷酸化 EGFR 值升高和 EGFR 活性降低,但在 BRAF 1 类突变、BRAF 2 类突变或 KRAS 突变细胞系中未观察到此现象。厄洛替尼抑制了 BRAF 3 类突变细胞系(IC 50 6.33 和 7.11 m M)和 BRAF 2 类突变细胞系(IC 50 5.51 m M)的二维生长,尽管其浓度高于 EGFR 突变系,但它对 BRAF 1 类突变(IC 50 ,> 25 m M)或 KRAS 突变(IC 50 ,> 25 m M)系没有影响。这些结果得到了三维和球体形成试验的证实。在癌细胞系百科全书中,与 BRAF 2 类突变和 KRAS 突变系相比,BRAF 3 类突变的 NSCLC 细胞系对 EGFR-TKI 的敏感性更高。
参考文献1。Berardo A等。胸苷激酶2的进步效率:临床方面,翻译进度和新兴疗法。j Neuromuscul dis。2022; 9(2):225-235。2。Garone C等。 胸苷激酶2缺乏的回顾性自然史。 J Med Genet。 2018; 55(8):515-21。 3。 Wang J等。 与TK2相关的线粒体DNA维持缺陷,肌病形式。 2018。 in:亚当MP等人,西雅图:华盛顿大学,西雅图; 1993-2022。 https://www.ncbi.nlm.nih.gov/books/nbk114628/。 2024年9月访问。 4。 Div>Domínguez-GonzálezC等。 晚期胸苷激酶2的效率:18例综述。 orphanet j Rare。 2019; 14(1):100。 5。 国家卫生研究院。 与TK2相关的线粒体DNA耗竭综合征,肌病形式.https://medlineplus.gov/genetics/conditic/condition/tk2-related-mitochondrated-mitochondrial-dna-depletion-depletion-syndrome-syndrome-syndrome-syndrome-myopathic-form/#genes。 2024年9月访问。 6。 克利夫兰诊所。 线粒体疾病。 https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases。 2024年9月访问。 7。 Amtmann D等。 TK2缺乏症综合征的影响及其通过核苷治疗对生活质量的治疗。 线粒体。 2023; 68:1-9。 8。 ma y。 2023。 欧洲。 海报53210。 9。 2024年9月访问。Garone C等。胸苷激酶2缺乏的回顾性自然史。J Med Genet。2018; 55(8):515-21。 3。 Wang J等。 与TK2相关的线粒体DNA维持缺陷,肌病形式。 2018。 in:亚当MP等人,西雅图:华盛顿大学,西雅图; 1993-2022。 https://www.ncbi.nlm.nih.gov/books/nbk114628/。 2024年9月访问。 4。 Div>Domínguez-GonzálezC等。 晚期胸苷激酶2的效率:18例综述。 orphanet j Rare。 2019; 14(1):100。 5。 国家卫生研究院。 与TK2相关的线粒体DNA耗竭综合征,肌病形式.https://medlineplus.gov/genetics/conditic/condition/tk2-related-mitochondrated-mitochondrial-dna-depletion-depletion-syndrome-syndrome-syndrome-syndrome-myopathic-form/#genes。 2024年9月访问。 6。 克利夫兰诊所。 线粒体疾病。 https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases。 2024年9月访问。 7。 Amtmann D等。 TK2缺乏症综合征的影响及其通过核苷治疗对生活质量的治疗。 线粒体。 2023; 68:1-9。 8。 ma y。 2023。 欧洲。 海报53210。 9。 2024年9月访问。2018; 55(8):515-21。3。Wang J等。 与TK2相关的线粒体DNA维持缺陷,肌病形式。 2018。 in:亚当MP等人,西雅图:华盛顿大学,西雅图; 1993-2022。 https://www.ncbi.nlm.nih.gov/books/nbk114628/。 2024年9月访问。 4。 Div>Domínguez-GonzálezC等。 晚期胸苷激酶2的效率:18例综述。 orphanet j Rare。 2019; 14(1):100。 5。 国家卫生研究院。 与TK2相关的线粒体DNA耗竭综合征,肌病形式.https://medlineplus.gov/genetics/conditic/condition/tk2-related-mitochondrated-mitochondrial-dna-depletion-depletion-syndrome-syndrome-syndrome-syndrome-myopathic-form/#genes。 2024年9月访问。 6。 克利夫兰诊所。 线粒体疾病。 https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases。 2024年9月访问。 7。 Amtmann D等。 TK2缺乏症综合征的影响及其通过核苷治疗对生活质量的治疗。 线粒体。 2023; 68:1-9。 8。 ma y。 2023。 欧洲。 海报53210。 9。 2024年9月访问。Wang J等。与TK2相关的线粒体DNA维持缺陷,肌病形式。2018。in:亚当MP等人,西雅图:华盛顿大学,西雅图; 1993-2022。 https://www.ncbi.nlm.nih.gov/books/nbk114628/。2024年9月访问。4。Div>Domínguez-GonzálezC等。 晚期胸苷激酶2的效率:18例综述。 orphanet j Rare。 2019; 14(1):100。 5。 国家卫生研究院。 与TK2相关的线粒体DNA耗竭综合征,肌病形式.https://medlineplus.gov/genetics/conditic/condition/tk2-related-mitochondrated-mitochondrial-dna-depletion-depletion-syndrome-syndrome-syndrome-syndrome-myopathic-form/#genes。 2024年9月访问。 6。 克利夫兰诊所。 线粒体疾病。 https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases。 2024年9月访问。 7。 Amtmann D等。 TK2缺乏症综合征的影响及其通过核苷治疗对生活质量的治疗。 线粒体。 2023; 68:1-9。 8。 ma y。 2023。 欧洲。 海报53210。 9。 2024年9月访问。Div>Domínguez-GonzálezC等。晚期胸苷激酶2的效率:18例综述。orphanet j Rare。2019; 14(1):100。 5。 国家卫生研究院。 与TK2相关的线粒体DNA耗竭综合征,肌病形式.https://medlineplus.gov/genetics/conditic/condition/tk2-related-mitochondrated-mitochondrial-dna-depletion-depletion-syndrome-syndrome-syndrome-syndrome-myopathic-form/#genes。 2024年9月访问。 6。 克利夫兰诊所。 线粒体疾病。 https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases。 2024年9月访问。 7。 Amtmann D等。 TK2缺乏症综合征的影响及其通过核苷治疗对生活质量的治疗。 线粒体。 2023; 68:1-9。 8。 ma y。 2023。 欧洲。 海报53210。 9。 2024年9月访问。2019; 14(1):100。5。国家卫生研究院。与TK2相关的线粒体DNA耗竭综合征,肌病形式.https://medlineplus.gov/genetics/conditic/condition/tk2-related-mitochondrated-mitochondrial-dna-depletion-depletion-syndrome-syndrome-syndrome-syndrome-myopathic-form/#genes。2024年9月访问。6。克利夫兰诊所。线粒体疾病。https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases。2024年9月访问。7。Amtmann D等。TK2缺乏症综合征的影响及其通过核苷治疗对生活质量的治疗。线粒体。2023; 68:1-9。8。ma y。2023。欧洲。 海报53210。 9。 2024年9月访问。欧洲。海报53210。9。2024年9月访问。US FDA TK2D患者听力。可在以下网址提供:https://www.umdf.org/tk2d-patient-listening-sessise-january-2022。10。balcells cf.2021。Nord Breakthrough Summit2021。11。Parikh S等。线粒体疾病的诊断和管理:线粒体医学协会的共识声明。Genet Med。 2015; 17(9):689–701。 12。DeBarcelos IP,Emmanuele V,HiranoM。主要线粒体肌病(PMM)的进步。 Curr Opin Neurol。 2019; 32(5):715-721。 13。 Dominguez-Gonzalez C等。 肌肉MRI特征模式,用于迟到的TK2缺陷诊断。 j Neurol。 2022; 269:3550–3562。 14。 El-Hattab AW,Scaglia F.线粒体DNA耗竭综合征:遗传基础,表现和治疗选择的审查和更新。 神经疗法。 2013; 10(2):186-98。Genet Med。2015; 17(9):689–701。 12。DeBarcelos IP,Emmanuele V,HiranoM。主要线粒体肌病(PMM)的进步。 Curr Opin Neurol。 2019; 32(5):715-721。 13。 Dominguez-Gonzalez C等。 肌肉MRI特征模式,用于迟到的TK2缺陷诊断。 j Neurol。 2022; 269:3550–3562。 14。 El-Hattab AW,Scaglia F.线粒体DNA耗竭综合征:遗传基础,表现和治疗选择的审查和更新。 神经疗法。 2013; 10(2):186-98。2015; 17(9):689–701。12。DeBarcelos IP,Emmanuele V,HiranoM。主要线粒体肌病(PMM)的进步。Curr Opin Neurol。2019; 32(5):715-721。 13。 Dominguez-Gonzalez C等。 肌肉MRI特征模式,用于迟到的TK2缺陷诊断。 j Neurol。 2022; 269:3550–3562。 14。 El-Hattab AW,Scaglia F.线粒体DNA耗竭综合征:遗传基础,表现和治疗选择的审查和更新。 神经疗法。 2013; 10(2):186-98。2019; 32(5):715-721。13。Dominguez-Gonzalez C等。肌肉MRI特征模式,用于迟到的TK2缺陷诊断。j Neurol。2022; 269:3550–3562。14。El-Hattab AW,Scaglia F.线粒体DNA耗竭综合征:遗传基础,表现和治疗选择的审查和更新。神经疗法。2013; 10(2):186-98。2013; 10(2):186-98。