聚合物复合材料(PC)的多功能性不再隐藏,因为这些几乎在当代社会的每个领域中都发现了应用程序,包括电子电路零件和广泛的家庭配件。聚合物复合材料由基质聚合物组成,该基质聚合物嵌入了多个连续的,小长度纤维中的聚合物基质中。除此之外,还添加了导电的聚合物作为填充物作为填充物。在本研究中,讨论了聚合物复合材料的发展,特征,生产和应用。 涉及聚合物复合材料的保暖塑料或热塑性塑料。 碱基聚合物的特性在用添加剂和提高强度,刚度和断裂韧性的增强方面得到了极大的增强。 除了加工参数以外,用于制造复合材料的制造过程极大地影响了最终产品的特征。 PC在汽车,航空,海洋,运动器材,生物医学仪器和电子电路板制造业中找到应用。 用于微电子应用的填充加固聚合物复合材料的巨大潜力是本研究的重点。 热塑性塑料和热固性聚合物的复合材料被用作包装材料,可在运输过程中增强包装产品的安全性。 导电聚合物复合材料作为温度传感器,断路器和可重复的熔断器找到应用。在本研究中,讨论了聚合物复合材料的发展,特征,生产和应用。涉及聚合物复合材料的保暖塑料或热塑性塑料。碱基聚合物的特性在用添加剂和提高强度,刚度和断裂韧性的增强方面得到了极大的增强。除了加工参数以外,用于制造复合材料的制造过程极大地影响了最终产品的特征。PC在汽车,航空,海洋,运动器材,生物医学仪器和电子电路板制造业中找到应用。用于微电子应用的填充加固聚合物复合材料的巨大潜力是本研究的重点。热塑性塑料和热固性聚合物的复合材料被用作包装材料,可在运输过程中增强包装产品的安全性。导电聚合物复合材料作为温度传感器,断路器和可重复的熔断器找到应用。聚合物复合材料具有良好的热导率和所需的电气和介电特性,可增强其对微电动功能的适用性。
此外,玻璃纤维增强塑料 (GFRP) 和其他复合材料物品(例如船舶、飞机、汽车零件、风力涡轮机叶片等)的使用越来越多,导致废物积累率不断增长。通常情况下,GFRP 物品不易回收,因为组成材料基质的热固性树脂在固化过程之后不能轻易与增强纤维分离。因此,它们的生产、使用和报废遵循线性经济方案。目前,还没有针对这些材料的经济高效、环保或实用的回收解决方案。大多数情况下,它们只是被丢弃在垃圾填埋场;有时,为了节省处理成本,它们被非法遗弃在环境中,导致因纤维释放而造成的污染和潜在的健康问题。仅在欧洲,每年就有约 55 000 吨 GFRP 被送往垃圾填埋场 [9,10];尽管如此,欧盟还是设定了目标,到 2030 年,通过采用创新的回收/再利用方法,将最终进入垃圾填埋场的垃圾量减少 10%。[11]
许多最近开发的无线皮肤界面生物电子设备都依赖于传统的热固性有机硅弹性体材料,例如聚二甲基硅氧烷 (PDMS),作为电子元件、射频天线和常见的可充电电池的软封装结构。在优化的布局和设备设计中,这些材料具有吸引人的特性,最突出的是它们即使在曲率高和自然变形较大的区域也能与皮肤形成温和、无创的界面。然而,过去的研究忽视了开发这些材料变体以进行多模式操作的机会,以增强设备对从机械损坏到热失控等故障模式的安全性。这项研究提出了一种自修复 PDMS 动态共价基质,其中嵌入了化学物质,可提供热致变色、机械致变色、应变自适应硬化和隔热,作为与安全相关的属性集合。该材料系统和相关封装策略的演示涉及一种无线皮肤界面设备,该设备可捕获健康状况的机械声学特征。这里介绍的概念可以立即应用于许多其他相关的生物电子设备。
聚合物复合材料在不同的长度尺度(纳米到宏)上使用聚合物矩阵和各种填充剂来构建具有升级功能的高级材料;即电导率,光效率和机械增强性。1 - 4个纤维增强的聚合物复合材料(FRPC)通过展示轻质,耐用和机械上优质的结构来塑造现代航空,汽车和风力涡轮机业。5热固性树脂是使用制造工程形成无缺陷的结构的主要矩阵(例如碳和玻璃)的主要矩阵类别。6当前,复合市场以双足A(DGEBA)为环氧单体的二甘油甲苯醚的使用为主导,这是通过双氯二氯二醇与层状氯氢化蛋白的反应而产生的(可以在碱基的情况下100%在工业尺度上生物生物生物蛋白)。7基于目标应用程序中的多功能胺或藻类中选择了硬化剂,并提供
海洋行业已经成为聚合物复合材料的主要用户已有50多年了。对玻璃纤维增强的热固性聚合物(主要是聚酯和环氧树脂)有着强烈的历史偏爱,但是制造商开始意识到当前的材料和实践是不可持续的。因此,人们对替代材料的兴趣越来越高,这些材料提供了较低的碳足迹,环境影响减少或两者兼而有之。今天做出的设计决策至关重要,因为许多海洋结构都设计了20到30年。为了关注可行的解决方案,必须将这些决定基于许多新材料和过程的平衡概述。本评论提供了对新兴材料选项,纤维,矩阵聚合物和三明治核心以及相关制造开发的最新评估。首先,讨论了游船行业的材料。然后描述了高性能的碳纤维复合应用。在诸如重复使用和回收等生命终结情景方面进行了讨论,研究了生命周期评估。最新的材料选择理念和相关优势的可持续性效果的例子说明了可能和要做的事情。
空气处理器描述 ClimateMaster Tranquility ® 数字空气处理器设计用于 Tranquility 室内/室外分体式装置,可用于垂直上流或下流,以及水平左流或水平右流。• AXM 板允许与通信分体式 (TEP/TES) 和 AWC 通信温控器进行 4 线连接。可以用简单的英语在温控器上配置气流和配件。• 空气盘管由铝翅片制成,并粘合到内部凹槽的铝管上。• 空气盘管在工厂经过全面的制冷剂泄漏检查测试。• 空气盘管具有汗制冷剂连接。• 非常适合新安装或添加空调。• 具有两组 3/4” FPT 冷凝水排放连接,易于连接。• 空气处理器经过 AHRI 认证,可与 ClimateMaster 室内和室外分体式装置一起应用系统。• 冷凝水排水盘由高级、耐热、无腐蚀的热固性材料制成。 • 独特的排水盘设计最大程度地提高了应用灵活性和冷凝水去除率。
原料材料已经成功地制成3D物体,包括弹性体[4,5]、热固性树脂[6,7]和水凝胶[8,9]。该领域的不断进步使得打印条件不再那么严格[10],适应的材料范围也更加广泛。[11]水凝胶尤其令人感兴趣,因为3D聚合物网络结合了结构完整性和高含水量,从而产生了可调的3D环境,以纳入功能性生物系统。[12]它们的固有机械性能可以通过嵌入的添加剂(如纳米颗粒[13]或多组分共混物)轻松调节——这些添加剂已经适应了3D打印。 [14,15] 对于生物复合材料 3D 打印,立体光刻 (SLA) [16] 或数字光处理 (DLP) [17] 依赖于低粘度可交联树脂系统,而直接墨水书写 (DIW) 3D 打印可以通过剪切稀化水凝胶实现。[18] 对于这些 DIW 系统,可以采用二次光交联步骤来共价稳定主要 3D 打印对象。[19]
产品增加 ARADUR ® 固化剂 15% ARALDITE ® 多功能环氧树脂 15% ARALDITE ® 双酚 F 环氧树脂 15% ARALDITE ® 工业胶粘剂 15% ARATHANE ® 高性能聚氨酯系统 15% AROCY ® 氰酸酯树脂 15% EPALLOY ® 特种环氧树脂 10% EPIBOND ® 胶粘剂 15% EPOCAST ® 高性能环氧边缘和空隙填料 18% ERISYS ® 环氧功能反应性改性剂 10% Eurelon ® 聚酰胺 30% EUREMELT ® 热塑性聚合物 15% Gabepro ® 和 Capcure® 硫醇固化剂 15% HyPox® 弹性体改性环氧树脂 10% Hypro® 反应性液体聚合物 10% KERIMID ® 聚酰亚胺树脂 15% MATRIMID ® 马来酰亚胺热固性和热塑性聚酰亚胺树脂 23% Nychem ® 特种丁腈乳胶 20% OMICURE ® 固化剂、促进剂和催化剂 15% 苯氧基树脂 15% REN、RenCast ® 、RENGEL、RENINFUSION、RENLAM、RENLEASE、RENPASTE、REN-PATCH、RENPIM、RenShape®、REN-WELD 工具产品 10%
空气处理器描述 ClimateMaster Tranquility ® 数字空气处理器设计用于 Tranquility 室内/室外分体式装置,可用于垂直上流或下流,以及水平左流或水平右流。• AXM 板允许与通信分体式 (TEP/TES) 和 AWC 通信温控器进行 4 线连接。可以用简单的英语在温控器上配置气流和配件。• 空气盘管由铝翅片制成,并粘合到内部凹槽的铝管上。• 空气盘管在工厂经过全面的制冷剂泄漏检查测试。• 空气盘管具有汗制冷剂连接。• 非常适合新安装或添加空调。• 具有两组 3/4” FPT 冷凝水排放连接,易于连接。• 空气处理器经过 AHRI 认证,可与 ClimateMaster 室内和室外分体式装置一起应用系统。• 冷凝水排水盘由高级、耐热、无腐蚀的热固性材料制成。 • 独特的排水盘设计最大程度地提高了应用灵活性和冷凝水去除率。
复合材料,尤其是碳纤维增强聚合物(CFRP),是现在在飞机,海洋和其他应用中常用的高性能结构材料类别,在汽车和土木工程应用中新兴的大规模使用。回收这些材料的困难是阻止其在大型市场中进一步应用的关键障碍。数十年来,工程界一直追求物理方法,以从寿命末期复合废物中回收价值。这项工作已经生成了可扩展的方法,可以从CFRP废物中恢复适中的值,但是由于其低值回收率,这些方法应用于CFRP废物的一小部分。相比之下,相对较少的回收CFRP的方法是基于系统地解构将它们融合在一起的热固性聚合物的战略方法。在本焦点文章中,我们将展示这些以结构为中心的CFRP回收方法的出现,并说明了这项研究的道路,以最终实现方法,以恢复包括现代CFRP的加固纤维和构成构成现代CFRP的热固材料。