在本课程中,我们将使用物理化学中的概念来研究共轭聚合物的物理和光学特性。开发更稳定的共轭聚合物在2000年获得诺贝尔奖。这些材料是“塑料半导体”,历史上一直充当太阳能电池材料,光发射器和晶体管。最近,共轭聚合物已用于生物电子学,神经形态计算和快速储能的有前途的技术。共轭聚合物的一个优点是它们是可以解决的解决方案,这意味着它们可以从墨水(例如在您的墨水喷射打印机中找到的)处理。在本课程中,您的三个学生的实验室组将使用诸如荧光光谱,原子力显微镜和光谱化学的技术研究三种不同共轭聚合物的物理和光谱特性。我们将执行的量子机械模拟支持我们的实验结果。这个实验室将像研究实验室一样运行(我不知道结果是什么!)。本课程的另一个组成部分是仪器编程和构建方面的动手体验。一个实验室将致力于研究您的共轭聚合物样品
摘要 随着对健康食品的需求不断增长,酸奶的配方也更多地转向活性益生菌发酵剂牛奶发酵和添加植物性食品成分来改善风味和营养成分。用益生菌发酵并添加益生元食品成分的合生元酸奶因其经科学证明的生物活性化合物可促进人体肠道健康并缓解菌群失调而成为非常受欢迎的功能性食品。因此,本研究的目的是评估添加富含花青素和生物活性多酚的新型紫叶茶 (Camelias sinensis) 泥的配制酸奶中益生菌的理化、营养近似组成和活力。全脂牛奶用 CH Hansens Limited 的益生菌发酵剂(嗜酸乳杆菌 (LA-5)、动物双歧杆菌乳亚种 -ABT 5)发酵。随后,在肯尼亚卡拉蒂纳大学食品与茶科学研讨会上,酸奶被一种新型紫茶泥强化。对配制的益生菌酸奶(PYFPT)和不含茶泥的对照酸奶的近似组成和理化性质(pH 值和矿物盐谱)进行了分析。使用 De Man、Rogosa 和 Sharpe (MRS) 厌氧菌选择性培养琼脂培养基确定益生菌菌落形成微生物的活力。即使在冷藏 28 天后,PYFPT 的 pH 值结果(4.24 ± 0.04)与对照酸奶也没有显著差异(p<0.05)。然而,除粗纤维含量(0.01 ± 0.01%)外,近似组成记录了显著差异。对照酸奶的水分含量和粗脂质含量(88.18±0.01 和(2.11±0.02)高于 PYFPT(78.14±0.04 和 1.33±0.09)。相反,配制的 PYFPT 中粗蛋白、碳水化合物和粗矿物盐的百分比(7.96±0.27、11.17±0.25;0.81±)高于对照酸奶(4.23±0.01、5.44±0.04、0.59±0.01)。添加的紫茶泥的灰分含量曲线记录了 16 种不同的矿物盐。大分子矿物质是主要的,其中钾含量最高(282 ppm),其次是钠(121 ppm)、镁(97.2 ppm)和钙(96.4 ppm)。微生物冷藏 28 天后,PYFPT 酸奶和对照酸奶的厌氧益生菌计数(6.14 - 6.80 log CFU/ml)没有统计学和显著差异。总之,该研究表明,使用紫叶茶泥配制营养强化益生菌酸奶是可行的,具有商业化的潜力。关键词:益生菌酸奶、紫叶茶、理化性质、近似值
nkbšrkj eheajbah@ eo pda ej = qcqn = hh = ng d = en ej@ r = j? = nekqo qnkla = j qjeranoepeao duoe?o‡jeranoepu kb eajj =½»1⁄2»1⁄2»1⁄2»1⁄2½。Duoe? pda ua = no da d = o> aaj pa =?dejc qj@ancn =@q = pa?kqnoao kj y jpnk@q? OPNQ?PQNA'‡ y DUOE?=H DAIEOPNU ‰ DANIK@UJ=IE?O'‡ y Q=JPQI ?DAIEOPNU‰ AJOEPU QJ?PEKJ=H DAKNU'‡ =J@ y DAKNAPE?=H DUOE? =N?D EJ DEO H=> @A=HO SEPD BENOP LNEJ?ELHAO >=OA@ OPQ@EAO KB? A?KN@EJCO KB OKIA KB DEO NAOA=N?D LNAOAJP=PEKJO =J@ PA=?DEJC LH=UHEOPO ?=J >A BKQJ@ =P DEO UKQPQ>A ?D=JJAH 3URI YRQ /LOLHQIHOGA BKQJ@ =P $QDWROH YRQ /LOLHQIHOG #3URIY/LOLHQIHOG 7ZLWWHU
使用标准板数,分析性的,全细菌的社区分析和DNA测序技术评估了尼日利亚Akwa Ibom州Iko River河口沉积物的摘要微生物丰度,多样性和物理化学。总昆虫细菌的总范围为2.1×10 6到3.6×10 6 CFU/g,硫酸盐还原细菌(SRB)从2.1×10 1 CFU/g到4.1×10 1 CFU/g。培养依赖性分析表明,枯草芽孢杆菌,kleibsiella sp,铜绿假单胞菌和P.粉末是最丰富的物种(100%)。宏基因组分析表明,对细菌种类的门杆菌和酸性杆菌的计数分别最高和最低。这两个顶点被未知的生物体占据,读数为582.0(33.88%)和562(33.26%)。沉积物中最著名的细菌是硫果尖,菲氏菌20.0(1.36%),富西科克杆菌15.0(1.02%),噻aniomicrospira chilensis 13.0(0.88%)和硫磺菌13.0(0.88%)(0.88%)。物理化学分析显示,上游沉积物pH(6.20),(6.40)中游,(6.50)下游,温度(上游28 o C)和下游电导率(130µsscm -1)略有下降。Iko河河口沉积物中丰富的有机物和微生物种群为商业和生态上重要的动植物提供营养和利基。这些数据可能在未来的生态评估,监测和评估尼日尔三角洲
1. 引言 GPCR(G 蛋白偶联受体)是最大的一类细胞外信号蛋白,可对由神经递质、离子、气味和其他刺激物组成的多种化学物质作出反应 [1]。大多数医学治疗靶点属于五大蛋白质家族之一,即 G 蛋白偶联受体 (GPCR)、离子通道、激酶、核激素受体和蛋白酶 [2]。G 蛋白偶联受体 (GPCR) 对各种生物功能至关重要,包括视觉、嗅觉和衰老。它们与各种人类病理生理状况(糖尿病、肥胖症、阿尔茨海默病和一些中枢神经系统疾病)有关,并且是治疗药物最重要的靶点之一 [2]。如图 1 所示,GPCR 主要根据其结构组成和相似性分为不同的家族 [3]。GPCR A 类(视紫红质样)仍然是其中最大的群体之一。事实上,GPCRs A 类靶向几乎占所有处方药的三分之一,因为它们中的大多数具有共同的激活机制 [4]。一种非常流行的寻找目标和线索的方法,其中有结构信息可用,称为基于片段的药物发现 (FBDD),用于筛选药物片段[5]。许多物理化学参数,如分子量、水溶性、可旋转键数和亲脂性值
摘要:磷(P)是农作物生产力至关重要的至关重要的。植物从土壤中吸收P盐,主要是殖民磷酸盐,但主要的P来源位于有机材料中。土壤磷酸酯酶(APASE)在通过水解从有机物释放P中起着至关重要的作用。酸和碱性磷酸酶对于缓解植物的P缺乏至关重要。在这篇综述着重于农业土壤的综述中,我们研究了生物物理学,农业管理和气候因素的关系,以及其与农作物生长和产量的联系。我们的发现表明,孔和土壤pH值之间存在很强的联系,受粘土含量,有机物,微生物生物量碳和氮的积极影响。采用健康的土壤实践,例如平衡的有机肥料使用,最佳的土壤水位,耕作减少,耕作和使用有益的植物微生物有助于增强APASE活动。然而,由于该领域的研究不足,孔和作物生产率之间的联系仍然不确定。我们的审查强调了评估基本与巨福纳的关系的至关重要的需求,以及基本的植物营养素,例如钾,养分比以及各种因素的协同作用。了解P通过植物土壤和/或植物 - 微生物生态系统中的孔快速,有效地同化,这对于农作物的生产力和产量至关重要。
摘要:大脑通过突触连接的神经元电路和网络的功能。这种类型的连接可能是由于物理力而存在的,这些力量相互作用以稳定大脑中的局部接触。粘附是一种基本的物理现象,允许不同的层,相和组织连接。同样,突触连接通过专门的粘附蛋白稳定。本综述讨论了粘附的基本物理和化学特性。细胞粘附分子(CAM)将讨论细胞粘附分子(IGSF)的钙粘蛋白,整合素,选择蛋白和免疫球蛋白家族(IGSF),并将在生理和病理学脑功能中的作用。最后,将描述凸轮在突触中的作用。此外,还将提出研究大脑粘附的方法。
氧化石墨烯是带有许多电子的导电材料之一。基于氧化石墨烯及其衍生物的材料由于其较大的表面积和低电阻而被用作有机太阳能电池的主要成分[1,2]。用氧化石墨烯处理的介电聚合物纳米复合材料的电导率几次改善。[3]。今天,由于电子传输层的大量增加,基于有机钙钛矿的太阳能电池用于用氧化石墨烯改装的非复合聚合物的生产。此外,染料还提高了二氧化钛和氧化石墨烯的TiO 2复合材料的光催化反应的效率,它们用作敏感的太阳能电池中的光阳极[4,5]。基于石墨烯的纳米复合材料近年来一直是许多研究人员的重点,因为它们出色的机械,电和热性能。具有较大表面积的透明石墨烯氧化物电极可以基于廉价的有机聚合物材料成为太阳能电池的组成部分。最近,基于有机钙钛矿,氧化石墨烯和氧化石墨烯已被用作新的,快速发展的太阳能电池中电子传输的组件[6,7]。基于石墨烯的太阳能电池运行的基本原理基本与常规生产的无机硅太阳能电池的操作基本相同。一些当前使用的材料将被石墨烯衍生物取代。
使用 RNA 靶向小分子治疗疾病的可能性正在成为药物发现和开发的下一个前沿。与蛋白质靶向小分子相比,与 RNA 结合的小分子的化学特性仍然相对不太清楚。为了填补这一空白,我们生成了前所未有的大量 RNA 小分子结合数据,并利用这些数据得出可用于定义富含 RNA 结合剂的化学空间区域的物理化学经验法则 - 小分子靶向 RNA (STaR) 经验法则。这些规则已应用于公开的 RNA 小分子数据集,并被发现具有很大的可推广性。此外,许多获得专利的 RNA 靶向化合物和 FDA 批准的化合物也通过了这些规则,以及包括 Risdiplam 在内的关键 RNA 结合批准药物案例研究。我们预计这项工作将大大加速对 RNA 靶向化学空间的探索,以释放 RNA 作为小分子药物靶点的潜力。
由于电子从大分子链上的π分子轨道离域,了解有机大分子的电子结构和立体化学之间的密切联系,从而获得半导体或金属导电性,这有利于解释和理解它们的电学、电化学和光学性质以及不同的导电模式,也将更好地解释这些性质,特别是在通过化学聚合或电沉积开发超薄导电或半导体层时;这些结构用于开发电流或阻抗生物传感器(生物电子学)中DNA、RNA或蛋白质的固定表面,以及OJI(“有机”结型晶体管)、Oled(有机发光二极管)、用于纳米电化学、半导体电化学和光电化学的纳米电极,以及它们在数字显示、防腐、量子点(纳米点)和有机光伏电池(OPVC)中的众多应用。