产品描述 大肠杆菌非甲基化基因组 DNA 包含从 Dam – 和 Dcm – 的 K-12 大肠杆菌菌株中纯化的 DNA。它非常适合用作 DNA 甲基化分析的阴性对照,该分析需要完全没有甲基化的 DNA。该标准还可以在下一代测序文库制备过程中加入实验样品或与实验样品并行运行,以监测亚硫酸盐转化效率和/或工作流程性能。如果用作原位加入对照,大肠杆菌菌株 K-12 亚菌株 MG1655 的参考基因组可用于比对和分析。可通过以下网址访问:https://www.ncbi.nlm.nih.gov/genome/167?genome_assembly_id=161521 推荐用法 大肠杆菌非甲基化基因组 DNA 可用作亚硫酸盐转化和下游分析的对照,例如亚硫酸盐 PCR、甲基化测序应用、原位加标对照、甲基化测定校准等。 协议 大肠杆菌非甲基化基因组 DNA 是高度完整的基因组 DNA。为了获得最佳结果,在定量和使用前确保 DNA 完全同质且完全溶解非常重要。量化和使用前建议执行以下步骤 1:
胞嘧啶甲基化是原核和真核生物的天然基础修饰,包括通过甲基转移酶酶将甲基添加到胞质嘧啶环的第五碳位置中(1)。在原核生物中,DNA甲基化提供了一种方法,可以通过限制性核酸内切酶保护宿主DNA免受消化的影响,这些核酸内切酶旨在消除外源DNA。DNA甲基化在基因表达的调节/控制中的较高真核生物中的功能(2)。哺乳动物中的大多数DNA甲基化发生在5'-CPG-3'二核苷酸中,尽管确实存在其他模式。发现哺乳动物基因组中所有5'-CpG-3'二核苷酸的所有5'-CpG-3'二核苷酸被发现是甲基化的,而剩下的20%的二十%的二十%二十分位于启动子或最初的基因外显子内。已经证明异常DNA甲基化是癌症中普遍存在的现象,可能是肿瘤发生期间发生的最早变化之一(3)。DNA甲基化也已显示在基因印记,胚胎发育,X染色体基因沉默和细胞周期调节中起着核心作用。能够有效,准确地检测和量化DNA甲基化的能力对于研究癌症,基因表达,遗传疾病以及生物学的许多其他重要方面至关重要。迄今为止,已经开发了许多方法来检测/量化DNA甲基化,包括:高性能毛细管电泳(4)和甲基化敏感的任意启动PCR(5)。但是,当今使用的最常见技术仍然依赖于亚硫酸盐转化率(6)。用硫酸硫酸氢盐处理DNA化学将非甲基化的胞嘧啶修饰为尿嘧啶,甲基化的胞嘧啶保持不变。转换后,可以使用所需的下游应用确定DNA的甲基化曲线。为了进行单个基因座分析,在亚硫酸盐转化率(即Bisulfite PCR)之后,通常会扩增感兴趣的区域,然后对pyrosequencing®进行测序或处理。甲基化检测的最新进展还允许使用包括基于阵列的方法在内的技术,减少表示甲基甲基甲基化(RRBS)和整个基因组Bisulfite测序(7)。
•CpG富含区域:CpG岛(CGI)•哺乳动物中2-5%的DNA(2900万CpG左右)•负责的酶:DNA甲基转移酶•通过细胞分裂保守•通过细胞分裂•帮助调节表达:
DNA甲基化在发展和分化中的基因表达中起着至关重要的作用,以及多发性硬化症,糖尿病,精神分裂症,衰老和癌症等疾病。能够访问大量基因或整个基因组的表观遗传信息的能力,应极大地促进对细胞中基因调节的性质以及细胞与环境之间相互作用的表观依赖性机制的理解。这种能力对于人类表观遗传疾病和辅助繁殖的研究也应具有重要意义。基于微阵列的DNA甲基化分析技术已开发出来以实现这一目标。这些甲基化的OD可以分为三个主要类别的甲基化状态询问:(1)歧视甲基诱导的C至T过渡,(2)通过甲基化敏感限制酶裂解基因组DNA,以及(3)用甲基结合的蛋白质或抗甲基甲基甲基甲基化的甲基甲基甲基化的甲基甲基化蛋白质。这些方法中的每一种都有其自身的局限性。例如,甲基化敏感的限制酶不能询问每个CpG位点,而免疫原理方法无法以任何靶向序列以单碱基分辨率提供甲基化信息。对于基于亚硫酸盐的方法,挑战在于基因组DNA的亚硫酸盐转化后基因组复杂性的降低。特定于目标的探针选择和杂交特异性仍然是主要技术障碍。
DNA 甲基化是一种关键的表观遗传修饰,可调节基因表达并在发育和疾病过程中发挥重要作用。在这里,我们介绍了胞嘧啶-磷酸-鸟嘌呤预训练转换器 (CpGPT),这是一种新颖的基础模型,在 1,500 多个 DNA 甲基化数据集上进行了预训练,涵盖来自不同组织和条件的 100,000 多个样本。CpGPT 利用改进的转换器架构来学习甲基化模式的综合表示,使其能够从有限的输入数据中推断和重建全基因组甲基化谱。通过捕获序列、位置和表观遗传背景,CpGPT 在针对与衰老相关的任务进行微调时优于专门的模型,包括按时间顺序的年龄预测、死亡风险和发病率评估。该模型在不同的甲基化平台和组织类型中具有很强的适应性。此外,对样本特定注意力权重的分析可以识别出对个体预测最有影响力的 CpG 位点。 CpGPT 作为基础模型,为 DNA 甲基化分析树立了新的标杆,在
特发性肺纤维化(IPF)是一种慢性,进行性和不可逆的间质性肺疾病,预后比肺癌差。这是一种致命的肺部疾病,其病因学和发病机理在很大程度上,没有有效的治疗药物会导致其治疗在很大程度上失败。随着连续的深度研究工作,IPF发病机理中的表观遗传机制得到了进一步发现和关注。作为广泛研究的表观遗传修饰机制,DNA甲基化主要由DNA甲基转移酶(DNMTS)促进,从而导致甲基添加到胞质碱基的五碳位置中,从而导致5-甲基胞糖苷(5-MC)的形成。DNA甲基化的失调与呼吸系统疾病的发展相关。最近,DNA甲基化在IPF发病机理中的作用也受到了相当大的关注。DNA甲基化模式包括甲基化修饰和脱甲基化的修饰,并通过基因表达调节调节一系列必需的生物学功能。通过修饰的基因组基碱基5-MC对5-羟基甲基胞嘧啶(5-HMC)的酶促转化,DNA二加氧酶的十个二十一酶家族对于促进活性DNA去甲基化至关重要。TET2,TET蛋白的成员,参与肺炎症,其蛋白表达在IPF患者的肺和肺泡上皮II型细胞中下调。本综述总结了肺纤维化的病理特征和DNA甲基化机制的当前知识,重点介绍了异常DNA甲基化模式,DNMT和TET蛋白在影响IPF病原体中的关键作用。研究DNA甲基化将基于涉及表观遗传机制的研究提供对IPF病理学的基本机制的理解,并为肺纤维化提供新颖的诊断生物标志物和治疗靶标。
脑膜瘤是最常见的原发性中枢神经系统肿瘤之一,根据组织病理学将世界卫生组织(WHO)分为三年级。金色标准治疗,手术切除,在某些情况下不完全切除和高复发率等问题受到阻碍。随着遗传改变,DNA甲基化,在脑膜瘤的发生和发育中在脑膜瘤的发展中起着至关重要的作用。脑膜瘤的表观遗传景观有助于精炼肿瘤分类,确定稳健的分子标记物,确定预后,指导治疗选择以及创新新的治疗策略。现有的分类缺乏全面的准确性,有效的疗法受到限制。甲基化的DNA标记物在各种脑膜瘤等级中表现出差异特征,是宝贵的诊断工具。尤其是,联合甲基化标记提供了有关脑膜瘤发病机理,组织起源,亚型分类和临床结局的见解。本评论整合了当前的研究,以突出一些在脑膜瘤诊断中使用的一些最有前途的DNA和启动子甲基化标记。尽管有希望,但DNA甲基化生物标志物在脑膜瘤诊断和治疗中的开发和应用仍处于婴儿期,目前只有少数DNA甲基化抑制剂目前临床用于脑膜瘤治疗。未来的研究对于验证这些标记并确定其临床实用性至关重要。脑膜瘤的组合甲基化的DNA标记对理解肿瘤的发展和进展具有广泛的影响,这标志着脑膜瘤治疗策略的范式转移。
1 Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, Ulm 89081, Germany 2 Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, Berlin 14195, Germany 3 Digital Health Cluster, Hasso Plattner Institute for Digital Engineering, Digitial Engineering Faculty, University of POTDSDAM,教授 - 赫尔默特 - 斯特尔。2-3,Potsdam 14482,德国4临床和生物心理学,心理学与教育研究所,乌尔姆大学,艾伯特 - 因斯坦 - 阿利47号,乌尔姆89081,德国5生物医学信息学信息学信息学,数据挖掘和数据分析,应用计算机科学和医疗学院,邮政编码8,邮政编码。德国2-3,Potsdam 14482,德国4临床和生物心理学,心理学与教育研究所,乌尔姆大学,艾伯特 - 因斯坦 - 阿利47号,乌尔姆89081,德国5生物医学信息学信息学信息学,数据挖掘和数据分析,应用计算机科学和医疗学院,邮政编码8,邮政编码。德国
Marine Gorse 1、Charline Bianchi 1、Charlotte Proudhon 1 > 在癌细胞中发现了 DNA 甲基化谱的改变,结合了基因组的整体低甲基化和特定区域(如通常未甲基化的 CpG 岛)的高甲基化。癌症发展的驱动作用与 DNA 甲基化修饰的某些区域有关,例如诱导肿瘤抑制基因的抑制或致癌基因和逆转录转座子的激活。这些改变是开发用于检测、诊断和预后癌症的特定标记物的主要候选者。特别是,这些分布在基因组中的标记代表着丰富的信息,为液体活检的创新提供了前景,尤其是由于用于诊断目的的人工智能的出现。这可以消除与敏感性和特异性相关的障碍,这些障碍对于肿瘤学中最困难的应用仍然有限:早期癌症的检测、残留疾病的监测和脑肿瘤的分析。针对控制表观基因组的酶促过程进一步提供了新的治疗策略,可以解决这些改变的表观基因组的调控异常。
表观遗传修饰,例如 DNA 甲基化,在癌症中被广泛研究。研究表明,DNA 甲基化模式可以区分各种癌症(包括前列腺癌)中的良性和恶性肿瘤。它还可能导致癌变,因为它通常与肿瘤抑制基因的下调有关。DNA 甲基化的异常模式,特别是 CpG 岛高甲基化表型 (CIMP),已显示出与不同临床特征和结果相关的证据,例如侵袭性亚型、更高的 Gleason 评分、前列腺特异性抗原 (PSA) 和整体肿瘤分期、整体预后较差以及生存期缩短。在前列腺癌中,特定基因的高甲基化在肿瘤和正常组织之间存在显着差异。甲基化模式可以区分前列腺癌的侵袭性亚型,包括神经内分泌前列腺癌 (NEPC) 和去势抵抗性前列腺腺癌。此外,DNA甲基化在无细胞DNA(cfDNA)中是可检测的,并且可反映临床结果,使其成为前列腺癌的潜在生物标志物。本综述总结了了解癌症中DNA甲基化变化的最新进展,重点是前列腺癌。我们讨论了用于评估DNA甲基化变化的先进方法以及这些变化背后的分子调节剂。我们还探讨了DNA甲基化作为前列腺癌生物标志物的临床潜力及其开发前列腺癌CIMP亚型靶向治疗的潜力。