图2。Ag NP阵列的电沉积。 (a)在包含0.25 mm Agno 3和250 mm kno 3的水溶液中以块状ITO电极(直径0.5 mm)获得的循环伏安图。 (b)示意图在单个沉积周期中描述探针位置,应用电位和电流。 红色虚线突出了周期中的重要事件:(1)检测探针样本接触,(2)应用阴极电位,(3)NP成核,以及(4)探针撤回和生长终止。 (c)示例在阵列制造过程中观察到的沉积瞬变,每个位置沉积了5个电荷。 使用〜1 µm移液器填充有0.25 mm Agno 3和0.25 mm kno 3的水溶液进行电沉积。 请注意,为了清楚起见,绘制了电流的负数。 (d)(c)中指示的瞬态视图。 在(e)和(f)中提供了制造阵列的光学和扫描电子显微镜图像。Ag NP阵列的电沉积。(a)在包含0.25 mm Agno 3和250 mm kno 3的水溶液中以块状ITO电极(直径0.5 mm)获得的循环伏安图。(b)示意图在单个沉积周期中描述探针位置,应用电位和电流。红色虚线突出了周期中的重要事件:(1)检测探针样本接触,(2)应用阴极电位,(3)NP成核,以及(4)探针撤回和生长终止。(c)示例在阵列制造过程中观察到的沉积瞬变,每个位置沉积了5个电荷。使用〜1 µm移液器填充有0.25 mm Agno 3和0.25 mm kno 3的水溶液进行电沉积。请注意,为了清楚起见,绘制了电流的负数。(d)(c)中指示的瞬态视图。在(e)和(f)中提供了制造阵列的光学和扫描电子显微镜图像。
过早失败的根本原因,而是电沉积Na的固有固定锚定/根结构,导致可逆性和最终细胞衰竭导致较差的电极底物。锚定的NA沉积物很容易与阳极电流收集器分离,从而产生了大量的孤儿和不良的阳极利用率。我们提出并评估在一系列化学物质中作为Na的底物中的薄金属相间涂层。基于热力学和离子传输考虑因素,预计此类底物将与Na进行可逆的合金反应,并被认为可以促进电沉积Na的良好根生长和高可逆性,而没有详细的形态。在各种选项中,据报道,AU在液体电解质中支持长时间Na阳极寿命和高可逆性(库仑效率> 98%)的令人印象深刻的能力,对于10 nm - 1000 nm的涂料厚度。作为评估阳极实用性实用性的第一步,我们评估了它们在Na || Span细胞中的性能,N:P比接近1:1。
,因此对剥削的影响更具抵抗力。目前,已知涂料沉积的几种方法已知并广泛用于行业,例如,选择性激光熔化,使用微型和纳米大小的粉末和反应性爆炸喷涂的HVOF技术[1-3]。电沉积是另一种允许具有特定功能特性的现代涂料的方法。通过控制电沉积段 - 米,即电流,电压,温度和浴室位置,可以影响所获得的材料的结构及其特性。这种方法的本质是同时构建几种金属的可能性,以形成金属粉末的合金甚至掺入涂层的结构[4-18]。镍是在各种电化学过程中广泛使用的金属之一,因为它具有良好的腐蚀液。为了改善镍涂层,例如使用合金而不是纯元素[5,6,12],采用了各种修饰方法。对电解镍涂层的有趣添加剂可以是Rhenium,它是地球上最稀有,最昂贵的金属之一。金属rhenium类似于铂,通常被分类为贵金属。以其纯净的形式,是一种银色的高硬度金属。它重新填充金属合金,显着增加了它们的硬度和抗性。rhenium仅溶于氧化酸:硝酸和热浓硫酸。大量的RE用于生产特殊合金或超级合金,例如在航空业生产喷气发动机组件。rhenium还用于生产热电偶,加热元件,电触点,电极,电磁体,真空和X -Ray灯,灯光灯泡,金属涂层 - INS-及其及其在二氧化和氧化等反应中的催化剂[19-22]。由于RE属于“耐药金属”的群体,因此对于电裂解合金涂层的形成是必不可少的。关于含有rhenuim的合金涂料的电沉积的研究一直是许多研究的主题。这些材料可以通过电流和电沉积方法[23 - 25]产生。
摘要 铊在氰化物和亚硫酸盐镀金溶液中都用作添加剂,用于调节金在目标基材上的沉积方式。镀液中的铊含量对沉积金的性质(包括其微观结构和硬度)有很大影响。因此,特别是在商业工艺应用中,准确、快速、方便地测量镀液中的铊含量至关重要,以确保所制造产品的质量。人们已经研究了含铊的镀金溶液的循环伏安行为,但其铊含量的量化并不令人满意,要么昂贵且耗时,要么在复合基质中不准确。在这里,我们提出了一种专有的电分析铊测量方法,该方法快速且具有出色的准确性和灵敏度,即使在存在常见的镀液分解产物的情况下也是如此。关键词 循环伏安法、电化学沉积、镀金溶液、铊、亚硫酸盐镀液。
从而更能抵抗开发的影响。目前,已有多种已知且广泛用于工业的涂层沉积方法,例如选择性激光熔化、使用微米和纳米级粉末的 HVOF 技术以及反应爆炸喷涂 [1-3]。电沉积是另一种可以生产具有特定功能特性的现代涂层的方法。通过控制电沉积参数(即电流、电压、温度和镀液成分),可以影响所得材料的结构,从而影响其性能。该方法的本质是可以同时共沉积几种金属以形成合金,甚至将金属粉末掺入涂层结构中 [4-18]。镍是广泛用于各种电化学过程中的金属之一,因为它具有良好的耐腐蚀性。为改善镍镀层,人们采用了各种改性方法,例如使用合金代替纯元素 [5,6,12]。电解镍镀层中一种有趣的添加剂是铼,它是地球上最稀有、最昂贵的金属之一。金属铼类似于铂,通常被归类为贵金属。纯净的铼是一种银色、有光泽且硬度较高的金属。它可精炼金属合金,显著提高其硬度和耐腐蚀性。铼只溶解在氧化性酸中:硝酸和热浓硫酸。大量铼用于生产特殊合金或超级合金,例如在航空工业中用于生产喷气发动机部件。铼还用于生产热电偶、加热元件、电触点、电极、电磁铁、真空和 X 射线灯、闪光灯泡、金属涂层,也可用作复分解和环氧化等反应的催化剂 [19-22]。由于铼属于“耐腐蚀金属”类,因此亚铁族阳离子的存在对于电解合金涂层的形成是必要的。含铼合金涂层的电沉积研究已成为许多研究的主题。此类材料可通过电流和化学沉积方法生产 [23-25]。
本研究研究了电沉积 FeNiOOH/Fe 2 O 3 /石墨烯纳米混合电极的光电化学行为,该电极具有精确控制的结构和成分。光电极组件采用生物启发的方式设计,其中每个组件都有各自的功能:Fe 2 O 3 负责吸收光,石墨烯框架负责适当的电荷载流子传输,而 FeNiOOH 覆盖层负责轻松的水氧化。通过线性扫描光伏安培法、入射光子到电荷载流子转换效率测量和长期光电解研究了每种成分对光电化学行为的影响。与原始 Fe 2 O 3 相比,性能最佳的 FeNiOOH/Fe 2 O 3 /石墨烯系统获得的光电流高出 2.6 倍。瞬态吸收光谱测量表明,Fe 2 O 3 /石墨烯样品的空穴寿命增加。然而,长期的光电解测量结合拉曼光谱证明,底层的纳米碳框架被光生空穴腐蚀。这个问题通过电沉积一层薄薄的 FeNiOOH 覆盖层来解决,该覆盖层可以快速接受来自 Fe 2 O 3 的光生空穴,从而消除导致石墨烯腐蚀的途径。
Exaddon的Ceres µAM系统通过局部电沉积打印高电导金属对象。该系统将直接在预预生使的芯片和Micropcb上打印独立的结构,例如支柱,针和线圈。打印在室温下发生,不需要后处理,并且与IC和PCB制造步骤兼容。分辨率为<1 µm,结构可以以微米精度位于印刷表面上。可能的纵横比为100:1。应用包括半导体探针测试,神经接口/BCIS和MMWAVE/5G/THZ组件。
中/高渗透合金(MEA/HEA)催化剂已成为理想的候选者,因为它们的多功能催化剂是由于多功能金属成分对增强的催化活性的协同作用。但是,适当的测量元素的便捷准备和筛选以实现高催化性能仍然具有挑战性。在这项工作中,我们通过可行的电沉积法成功合成了一个摩卡库-P MEA电催化剂,用于分裂电催化。对于OER来说,AS制备的MEA表现出了超过276.1 mV(J = 10 mA/cm 2),其TAFEL斜坡为38.3 mV/dec,与她(j = 10 mA/cm 2)的超电势为64.7 mV,以及Tafel Slope的87.7 mv/dec.7.7 mv/dec。在整个水电解细胞中使用,MEA在50 mA/cm 2的高电流密度下达到了近100%的法拉达效率和卓越的稳定性。X射线光电子光谱(XPS)分析验证了高价值CO和MO是OER的最活跃的位点,而在P的存在下,富含电子的Cu是在Mococu-p Mea中造成的。这项研究不仅提供了可行的电沉积策略,可以获得具有较高活性和出色稳定性的MEA催化剂,而且还提供了对MEA催化中活性位点的鉴定的基本灯。
电镀是一种电沉积工艺,通过电流作用在表面形成致密、均匀、附着力强的涂层,通常是金属或合金。[1] 产生的涂层通常用于装饰和/或保护目的,或增强表面的特定性能。表面可以是导体,例如金属,也可以是非导体,例如塑料。电镀产品广泛应用于许多行业,如汽车、船舶、航空航天、机械、电子、珠宝、国防和玩具行业。电镀工艺的核心部分是电解池(电镀装置)。在电解池(电镀装置)中,电流通过含有电解质、阳极和阴极的槽。在工业生产中,通常还需要预处理和后处理步骤。