1美国科罗拉多州科罗拉多大学儿科系,美国科罗拉多州2,美国科罗拉多大学2号科罗拉多大学,美国科罗拉多州奥罗拉大学,美国3号贝勒医学院,美国德克萨斯州休斯敦,美国德克萨斯州休斯敦市,犹他州4号,美国盐湖卫生大学4,美国盐湖城,美国盐湖市,美国,美国盐湖市盐湖市,5次,美国盐湖市,北部,港口医学中心。美国威斯康星州麦迪逊市,美国麦迪逊,美国,儿童医院,堪萨斯城7儿童局部,美国密苏里州,美国,美国,休斯敦市8号,美国北部卫生部8,美国特克斯顿休斯敦,美国美国9个儿童医院,科罗拉多州,科罗拉多州,美国科罗拉多州,美国,美国,美国10个部门1美国科罗拉多州科罗拉多大学儿科系,美国科罗拉多州2,美国科罗拉多大学2号科罗拉多大学,美国科罗拉多州奥罗拉大学,美国3号贝勒医学院,美国德克萨斯州休斯敦,美国德克萨斯州休斯敦市,犹他州4号,美国盐湖卫生大学4,美国盐湖城,美国盐湖市,美国,美国盐湖市盐湖市,5次,美国盐湖市,北部,港口医学中心。美国威斯康星州麦迪逊市,美国麦迪逊,美国,儿童医院,堪萨斯城7儿童局部,美国密苏里州,美国,美国,休斯敦市8号,美国北部卫生部8,美国特克斯顿休斯敦,美国美国9个儿童医院,科罗拉多州,科罗拉多州,美国科罗拉多州,美国,美国,美国10个部门
摘要:CRK和CRKL是病毒癌蛋白V-CRK的细胞对应物。CRK和CRKL在许多类型的人类癌症中过表达,与预后不良相关。此外,肿瘤细胞系中CRK和CRKL的基因敲低和敲除抑制肿瘤细胞功能,包括细胞增殖,转化,迁移,侵袭,上皮 - 间质转变,对化学疗法药物的抵抗力,以及体内肿瘤的生长和转移。相反,用CRK或CRKL的肿瘤细胞过表达可增强肿瘤细胞功能。因此,已提出CRK和CRKL作为癌症治疗的治疗靶标。然而,尚不清楚CRK和CRKL是否对各种癌症类型的肿瘤细胞功能产生明显或重叠的贡献,因为在大多数研究中已独立检查了CRK或CRKL。最近使用结直肠癌和胶质母细胞瘤细胞的两项研究清楚地表明,CRK和CRKL需要单独消融并组合以了解两种蛋白质在癌症中的不同和重叠的作用。对CRK和CRKL在肿瘤细胞功能中的个体和重叠角色的全面理解对于制定有效的治疗策略是必要的。本综述系统地讨论了CRK和CRKL在肿瘤细胞功能中的关键功能,并为靶向CRK和CRKL的新观点提供了癌症治疗中的新观点。
1 美国密歇根州大急流城 Spectrum Health 医学遗传学部 49503;2 美国密歇根州大急流城密歇根州立大学人类医学院儿科与人类发育系 49503;3 美国缅因州巴尔港杰克逊实验室 04609;4 美国密歇根州大急流城范安德尔研究所细胞生物学系 49503;5 美国密歇根州大急流城达文波特大学科学系 49512;6 美国密歇根州卡拉马祖布朗森卫理公会医院新生儿重症监护室 49007;7 美国密歇根州东兰辛密歇根州立大学遗传学与基因组科学项目 48824;8 美国密歇根州大急流城 Spectrum Health 研究办公室 49503; 9 美国加利福尼亚州圣地亚哥市雷迪儿童基因组医学研究所,92123;10 美国密歇根州立大学药理学和毒理学系,密歇根州东兰辛市 48824
(Hidalgo等人,2022),这可能会阻止这种畸形,并且由于流产率未知。出于相同的原因,只有少数前瞻性,纵向和精心设计的Chiari II研究。In addition to the hallmark radiological findings [caudal displacement of posterior fossa content, inferior displacement of the cervical spinal cord, enlargement of ventricles, and (myelo)meningocele] in patients with Chiari II, there are a number of associated brain malformations [e.g., cerebellar hypoplasia ( Van den Hof et al.,1990年),胶体融合和直肠喙(Nagaraj et al。,2017年),Harrary Massa Intermedia和Habenular佣金和松果体的延伸(Gooding等人,1967年),call体和室脑周围淋巴结异构的失调(Hino-Shishikura等人。,2012年),颅神经和累加狭窄的发育不全(Tubbs and Oakes,2013)]。此外,Chiari II经常与次生发现有关,即脊柱异常[例如,platybasia(Cogan and Barrows,1954),脊柱侧弯(Cesmebasi etal。,2015年)],脊髓[,2011年),脂肪素细胞酯(Geerdink等人,2012年),Dibytyatomyelia(Parmar等人,2003)]和脑膜[,2012)]。这种相关发现的广泛调色板支持了Chiari II患者对整个中枢神经系统(CNS)和支持它的非CNS器官系统的发育异常的概念。,2008年; Kostovic和Vasung,2009年; Vasung等。此外,人胎儿脑发育的重要组成部分是瞬态胎儿室,其中包括心室区域,室内区域,中间区域,子板带,皮质板和边缘区(Bystron等人),2016年)。由于其中发生的事件,包括细胞增殖,迁移,突触发生,修剪,细胞死亡,面积的指定和轴突髓鞘形成,隔室是胎儿发育不可或缺的(Kostovic and Vasung,2009; Kang等人,2009; Kang等人。,2011年)。因此,表征Chiari II中瞬时胎儿区域的区域生长和发展可能与更好地理解其病理生理学有关。最后,尽管Chiari II的病理生理学仍然未知,但开放脊髓障碍(即腰椎脑膜关脉和/或脊髓脑膨出)之间的密切关联也表示赞成“ CSF泄漏理论”(McLone and Knepper,1989; McLone等; McLone等。根据该理论,后窝含量的尾部位移发生在脑脊液渗漏的脊柱泄漏处,这是由于神经孔的尾尾末端的非封闭末端引起的脊柱水平,大约在26天的受孕期间(Pexieder和Jelínek,Jelínek,1970; 1970; McLone and Kneperper and Kneperper,1989年)。此外,脑积水和脊椎队是与CSF相关的另外两个与Chiari II相关的发现,以及脑室的增大,这是一种与异常的产前脑发育有关的产前发现(Duy等。,2022b; Vasung等。,2022)。,2018年)。,2019,2021)和脑发育异常(Rollins等人,2021)。在脑力头的Chiari II患者中分流的产前或产后放置的大小与更好的神经发育结果没有联系(Houtrow等人因此,在某些情况下,其他可能会解释出更糟的神经发育结果。胎儿MRI目前用于量化区域脑体积并表征正常(Vasung等人因此,我们研究的目的是使用胎儿MRI来表征
可能出现头痛,癫痫发作和/或神经系统缺陷的客观患者(AVM)可能出现。可能会偶然发现少量案件。这些病变由于报道稀疏而尚未完全理解。在此,作者描述了迄今为止最大的系列,比较了儿童的偶然性和有症状的无破坏性AVM的表现,血管结构和管理。方法作者对1998年至2022年在加利福尼亚大学旧金山分校介绍脑AVM的患者进行了回顾性分析。纳入标准在出现时年龄≤18岁,是在产后被诊断出的血管造影未破裂的AVM。有76名未破坏AVM的儿童的结果,有66名(86.8%)出现头痛,癫痫发作和/或神经缺陷。十个AVM(13.1%)是通过无关的疾病检查(50%),颅创伤(40%)或研究研究参与(10%)的偶然发现的。与有症状的不充气AVM的患者相比,偶然未破坏的AVM的患者的平均值±SD最大直径(2.82±1.1 vs 3.98±1.52 cm,P = 0.025),更少的具有深静脉输液(20%的患者vs 61%,P = 0.036)。他们也在较早的年龄(10±5.2 vs 13.5±4岁,p = 0.043)和持续时间更长的持续时间(541±922 vs 196±448天,p = 0.005)。在观察期间,有1名患者患有反复出现的头痛并证明了AVM Nidus的生长。上次随访中消除了八个AVM(80%)。用放射外科处理的四个大于3 cm或深处的AVM大于3 cm。其他六个AVM通过重新处理处理,并接受2个接受术前栓塞。术后并发症包括切除后的2个短暂性神经缺陷和1例放射外科手术后的癫痫发育延迟发育。平均随访期为5。7±5。7年,没有任何出血发作。结论偶然发现了无破坏AVM的小儿患者。与有症状的未充气AVM相比,这些附带病变具有早期的呈现和更多的基本血管结构,在症状发育或破裂之前为AVM的自然历史提供了快照。
叶酸通过防止神经crest细胞的破坏和小鸡胚胎模型中的神经crest细胞的破坏和畸形,可减少MSG诱导的致致致造性Nakhon Rathom,Mahidol University,Siriraj医院,泰国2号,泰国2号病理科学系,科学系,Mahidol University,Mahidol University,Nakhon Rathom 73170,泰国3病理学信息与学习中心,病理学系,病理学系,科学大学,Mahidol University,Mahidol University,Mahidol University,Mahidol University,Nakhon Patherom 733170,Mahidol University, * 33170-0-therm 733170,EM: thanaporn.run@mahidol.ac.th)收到:2023年1月23日,修订:2023年2月13日,接受:2023年2月15日,发布:2023年3月20日摘要
目的脑动静脉畸形 (AVM) 的形态和血管结构特征已被广泛描述并与结果相关;然而,很少有研究对 AVM 血流进行定量分析。作者使用直接视觉分析和基于计算机的方法检查了血管造影上的脑 AVM 血流和通过时间,并将这些因素与伽玛刀放射外科治疗后的闭塞反应相关联。方法在单个机构使用 2013 年 1 月至 2019 年 12 月管理的前瞻性患者登记册进行回顾性分析:使用视觉流量测定方法分析了 71 名患者,使用基于计算机的方法分析了 38 名患者。在对两种方法进行比较和验证后,将闭塞反应与流量分析、人口统计学、血管结构和剂量数据相关联。结果 AVM 平均体积为 3.84 cm3(范围 0.64–19.8 cm3),32 个 AVM(45%)位于关键功能位置,平均边缘放射外科剂量为 18.8 Gy(范围 16–22 Gy)。27 个 AVM(38%)被归类为高流量,37 个(52%)被归类为中等流量,7 个(10%)被归类为低流量。研究期间,44 名患者(62%)完全闭塞;低流量 AVM 的平均闭塞时间为 28 个月,中等流量 AVM 的平均闭塞时间为 34 个月,高流量 AVM 的平均闭塞时间为 47 个月。预测闭塞的因素的单变量和多变量分析包括 AVM 病灶体积、年龄和流量。 5 名患者 (7%) 被确诊为不良放射效应,67 名患者 (94%) 在随访期间未出现任何功能恶化。结论 AVM 血流分析和按传输时间分类是预测闭塞概率和闭塞时间的有用指标。作者认为,更定量地了解血流有助于指导立体定向放射外科治疗并设定准确的结果预期。
PV流; VTIR,反向光伏流量的速度时间积分。A N.A.不适用。b型A:心室收缩期和早期舒张期间的连续向前流动在心房收缩期间通常有限的A波反转。c型B:心室收缩期和早期舒张期间的连续向前流,A波逆转增加。d型C:以最小或没有早期心室舒张期流动为单位。e HLHS分类,严重计划:HLHS不需要紧急的产后治疗 - 新生儿出生的状况良好,只需要前列腺素E1 IV输注,并且可以为计划的心脏手术的第一阶段做好准备;除前列腺素E1 IV输注外,HLHS严重的HLHS还需要在导管实验室(Cath Lab)中进行紧急治疗(前24小时);最严重的HLHS,HLHS在产后寿命的第一分钟内是氰基的,对IV Prostaglandin E1输液没有反应,并且是
材料与方法:回顾性分析83例行显微手术切除涉及运动相关区域的脑动静脉畸形患者,利用TOF-MRA和DTI的人工智能技术计算4项人工智能指标,包括FN 5mm/50mm(距病灶边界5~50mm范围内的纤维数目比例)、FN 10mm/50mm(距病灶边界5~50mm范围内的纤维数目比例)、FP 5mm/50mm(距病灶边界5~50mm范围内的纤维体素点比例)、FP 10mm/50mm(距病灶边界5~50mm范围内的纤维体素点比例),采用单因素及多因素分析各指标与术后远期运动功能障碍的关系。使用最小绝对值收缩和选择算子回归与皮尔逊相关系数来选择最佳特征,以开发机器学习模型来预测术后运动缺陷。计算曲线下面积以评估预测性能。
材料与方法:回顾性分析83例行显微手术切除涉及运动相关区域的脑动静脉畸形患者,利用TOF-MRA和DTI的人工智能技术计算4项人工智能指标,包括FN 5mm/50mm(距病灶边界5~50mm范围内的纤维数目比例)、FN 10mm/50mm(距病灶边界5~50mm范围内的纤维数目比例)、FP 5mm/50mm(距病灶边界5~50mm范围内的纤维体素点比例)、FP 10mm/50mm(距病灶边界5~50mm范围内的纤维体素点比例),采用单因素及多因素分析各指标与术后远期运动功能障碍的关系。使用最小绝对值收缩和选择算子回归与皮尔逊相关系数来选择最佳特征,以开发机器学习模型来预测术后运动缺陷。计算曲线下面积以评估预测性能。